Skip to main content

ML Confidential: Machine Learning on Encrypted Data

  • Conference paper
Information Security and Cryptology – ICISC 2012 (ICISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7839))

Included in the following conference series:

Abstract

We demonstrate that, by using a recently proposed leveled homomorphic encryption scheme, it is possible to delegate the execution of a machine learning algorithm to a computing service while retaining confidentiality of the training and test data. Since the computational complexity of the homomorphic encryption scheme depends primarily on the number of levels of multiplications to be carried out on the encrypted data, we define a new class of machine learning algorithms in which the algorithm’s predictions, viewed as functions of the input data, can be expressed as polynomials of bounded degree. We propose confidential algorithms for binary classification based on polynomial approximations to least-squares solutions obtained by a small number of gradient descent steps. We present experimental validation of the confidential machine learning pipeline and discuss the trade-offs regarding computational complexity, prediction accuracy and cryptographic security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1993); Computational algebra and number theory, London (1993)

    Article  MathSciNet  Google Scholar 

  2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in Theoretical Computer Science – ITCS 2012, pp. 309–325. ACM (2012)

    Google Scholar 

  4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley and Sons (2000)

    Google Scholar 

  6. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/

  7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  8. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  10. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Book  Google Scholar 

  13. Langlois, A., Stehlé, D.: Hardness of decision (R)LWE for any modulus. Cryptology ePrint Archive, Report 2012/091 (2012), http://eprint.iacr.org/

  14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011)

    Google Scholar 

  15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010), http://eprint.iacr.org/2012/230

    Chapter  Google Scholar 

  17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press (2002)

    Google Scholar 

  18. Poggio, T., Rifkin, R., Mukherjee, S., Niyogi, P.: General conditions for predictivity in learning theory. Nature 428, 419–422 (2004)

    Article  Google Scholar 

  19. Rivest, R.L.: Cryptography and machine learning. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  20. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Williams, O., McSherry, F.: Probabilistic inference and differential privacy. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 2451–2459 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graepel, T., Lauter, K., Naehrig, M. (2013). ML Confidential: Machine Learning on Encrypted Data. In: Kwon, T., Lee, MK., Kwon, D. (eds) Information Security and Cryptology – ICISC 2012. ICISC 2012. Lecture Notes in Computer Science, vol 7839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37682-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37682-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37681-8

  • Online ISBN: 978-3-642-37682-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics