Skip to main content

Spatiotemporal Salience via Centre-Surround Comparison of Visual Spacetime Orientations

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

Early delineation of the most salient portions of a temporal image stream (e.g., a video) could serve to guide subsequent processing to the most important portions of the data at hand. Toward such ends, the present paper documents an algorithm for spatiotemporal salience detection. The algorithm is based on a definition of salient regions as those that differ from their surrounding regions, with the individual regions characterized in terms of 3D, (x,y,t), measurements of visual spacetime orientation. The algorithm has been implemented in software and evaluated empirically on a publically available database for visual salience detection. The results show that the algorithm outperforms a variety of alternative algorithms and even approaches human performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kandel, E., Schwartz, J.: Principles of Neuroscience. Elsevier, NY (1996)

    Google Scholar 

  2. Derpanis, K., Wildes, R.: Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. PAMI 34, 1193–1205 (2012)

    Article  Google Scholar 

  3. Kullback, S.: Information Theory and Statistics. Dover, Mineola (1968)

    Google Scholar 

  4. Picard, M.: Background subtraction techniques: A review. In: SMC, pp. 3099–3104 (2004)

    Google Scholar 

  5. Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252 (1999)

    Google Scholar 

  6. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density for visual surveillance. Proc. IEEE 90, 1151–1163 (2002)

    Article  Google Scholar 

  7. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction for a moving observer. In: ICCV, pp. 1305–1312 (2003)

    Google Scholar 

  8. Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. PAMI 27, 1778–1792 (2005)

    Article  Google Scholar 

  9. Hayman, E., Eklundh, J.: Statistical background subtraction for a moving observer. In: ICCV (2003)

    Google Scholar 

  10. Ren, Y., Chua, C., Ho, Y.: Motion detection with nonstationary background. MVA 13, 332–343 (2003)

    Google Scholar 

  11. Wixson, L.: Detecting salient motion by accumulating directionally-consistent flow. PAMI 22, 774–780 (2000)

    Article  Google Scholar 

  12. Bugeau, A., Perez, P.: Detection and segmentation of moving objects in highly dynamic scenes. In: CVPR (2007)

    Google Scholar 

  13. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vis. Res. 49, 1295–1306 (2009)

    Article  Google Scholar 

  14. Bruce, N., Tsotsos, J.: Towards a hierarchical representation of visual saliency. In: WAPCV, pp. 98–111 (2009)

    Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. PAMI 20, 1254–1259 (1998)

    Article  Google Scholar 

  16. Doretto, K., Chiuso, A., Wu, Y., Soatto, S.: Dynamic textures. IJCV 51, 91–109 (2003)

    Article  MATH  Google Scholar 

  17. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. PAMI 32, 171–177 (2010)

    Article  Google Scholar 

  18. Bence, M., Olveczky, P., Baccus, S.: Segregation of object and background motion in the retina. Nature (2003)

    Google Scholar 

  19. Heeger, D.: Model for the extraction of image flow. JOSA-A 2, 1455–1471 (1987)

    Article  Google Scholar 

  20. Granlund, G., Knuttson, H.: Signal Processing for Computer Vision. Kluwer, Norwell (1995)

    Book  Google Scholar 

  21. Simoncelli, E., Heeger, D.: A model of neuronal responses in visual area MT. Vis. Res. 38 (1996)

    Google Scholar 

  22. Chomat, O., Crowley, J.: Probabilistic recognition of activity using local appearance. In: CVPR, pp. 104–109 (1999)

    Google Scholar 

  23. Derpanis, K., Sizintsev, M., Cannons, K., Wildes, R.: Efficient action spotting based on a spacetime orientation structure representation. In: CVPR (2010)

    Google Scholar 

  24. Zaharescu, A., Wildes, R.: Anomalous Behaviour Detection Using Spatiotemporal Oriented Energies, Subset Inclusion Histogram Comparison and Event-Driven Processing. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 563–576. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Sadanand, S., Corso, J.: Action bank: A high-level representation of activity in video. In: CVPR (2012)

    Google Scholar 

  26. Derpanis, K., Lecce, M., Daniilidis, K., Wildes, R.: Dynamic scene understanding: The role of orientation features in space and time in scene classification. In: CVPR (2012)

    Google Scholar 

  27. Klaser, A., Marszalek, M., Schmid, C.: A spatiotemporal descriptor based on 3d-gradients. In: BMVC (2008)

    Google Scholar 

  28. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)

    Google Scholar 

  29. Derpanis, K., Sizintsev, M., Cannons, K., Wildes, R.: Action spotting and recognition based on a spatiotemporal orientation analysis. PAMI (to appear)

    Google Scholar 

  30. Freeman, W., Adelson, E.: The design and use of steerable filters. PAMI 13, 891–906 (1991)

    Article  Google Scholar 

  31. Derpanis, K., Wildes, R.: Dynamic texture recognition based on distributions of spacetime oriented structure. In: CVPR (2010)

    Google Scholar 

  32. Lindeburg, T.: Scale-Space Theory in Computer Vision. Kluwer, Norwell (1993)

    Google Scholar 

  33. Bracewell, R.: The Fourier Transform and its Applications. McGraw-Hill, NY (2000)

    Google Scholar 

  34. Pearce, P., Pearce, S.: The Polyhedra Primer. Van Nostrand Reinhold, NY (1978)

    Google Scholar 

  35. Jahne, B.: Digital Image Processing. Springer, Berlin (2005)

    Google Scholar 

  36. Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57, 137–154 (2004)

    Article  Google Scholar 

  37. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, NY (2000)

    Google Scholar 

  38. Koenderink, J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaharescu, A., Wildes, R. (2013). Spatiotemporal Salience via Centre-Surround Comparison of Visual Spacetime Orientations. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics