Skip to main content

Adaptive Integration of Feature Matches into Variational Optical Flow Methods

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

Despite the significant progress in terms of accuracy achieved by recent variational optical flow methods, the correct handling of large displacements still poses a severe problem for many algorithms. In particular if the motion exceeds the size of an object, standard coarse-to-fine estimation schemes fail to produce meaningful results. While the integration of point correspondences may help to overcome this limitation, such strategies often deteriorate the performance for small displacements due to false or ambiguous matches. In this paper we address the aforementioned problem by proposing an adaptive integration strategy for feature matches. The key idea of our approach is to use the matching energy of the baseline method to carefully select those locations where feature matches may potentially improve the estimation. This adaptive selection does not only reduce the runtime compared to an exhaustive search, it also improves the reliability of the estimation by identifying unnecessary and unreliable features and thus by excluding spurious matches. Results for the Middlebury benchmark and several other image sequences demonstrate that our approach succeeds in handling large displacements in such a way that the performance for small displacements is not compromised. Moreover, experiments even indicate that image sequences with small displacements can benefit from carefully selected point correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)

    Article  Google Scholar 

  3. Berg, A., Malik, J.: Geometric blur for template matching. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 607–614 (2001)

    Google Scholar 

  4. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical Model-Based Motion Estimation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 237–252. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  5. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)

    Article  Google Scholar 

  6. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3), 500–513 (2011)

    Article  Google Scholar 

  8. Bruhn, A., Weickert, J.: Towards ultimate motion estimation: Combining highest accuracy with real-time performance. In: Proc. IEEE International Conference on Computer Vision, pp. 749–755 (2005)

    Google Scholar 

  9. Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  10. Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., Weickert, J.: A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. In: Proc. ECCV Workshop on Computer Vision with GPUs (2010)

    Google Scholar 

  11. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Proc. Alvey Vision Conference, pp. 147–152 (1988)

    Google Scholar 

  12. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  13. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based registration. IEEE Transactions on Medical Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  14. Li, R.: A new three-step search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 4(4), 438–442 (1994)

    Article  Google Scholar 

  15. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  17. Ochs, P., Brox, T.: Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions. In: Proc. IEEE International Conference on Computer Vision, pp. 1583–1590 (2011)

    Google Scholar 

  18. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3017–3024 (2011)

    Google Scholar 

  19. Steinbrücker, F., Pock, T., Cremers, D.: Large displacement optical flow computation without warping. In: Proc. IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  20. Sun, D., Sudderth, E., Black, M.J.: Layered image motion with explicit occlusions, temporal consistency, and depth ordering. In: Proc. Advances in Neural Information Processing Systems 23, pp. 2226–2234 (2010)

    Google Scholar 

  21. Sundaram, N., Brox, T., Keutzer, K.: Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: Proc. IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  23. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1293–1300 (2010)

    Google Scholar 

  24. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., Seidel, H.-P.: Complementary Optic Flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207–220. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stoll, M., Volz, S., Bruhn, A. (2013). Adaptive Integration of Feature Matches into Variational Optical Flow Methods. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics