Skip to main content

Multi-scale Modelling of Orthotropic Properties of Trabecular Bone in Nanoscale

  • Conference paper
Design and Modeling of Mechanical Systems

Abstract

The bone is a hierarchically structured material with mechanical properties depending on its architecture at all scales. In this paper, a trabecular bone multiscale model based on finite element analysis was developed to link sub-nanoscopic scale (Microfibril) and nanoscopic (Fibril) to predict the orthotropic properties of bone at different structural level. To identify the orthotropic properties, we used an inverse identification algorithm. The approach shows a good efficiency in computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  2. Sansalone, V., Naili, S., Bousson, V., Bergot, C., Peyrin, F., Zarka, J., Laredo, J.D., Haïat, G.: Determination of the heterogeneous anisotropic elastic properties of human femoral bone: From nanoscopic to organic scale. Journal of Biomechanics 43, 1857–1863 (2010)

    Article  Google Scholar 

  3. Hambli, R., Katerchi, H., et al.: Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomechanics and Modeling in Mechanobiology (2010)

    Google Scholar 

  4. Tovar, A.: Bone remodeling as a hybrid cellular automaton optimization process. PhD dissertation, University of Notre Dame, Indiana (2004)

    Google Scholar 

  5. Martínez-Reina, J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: A bone remodelling model including the directional activity of BMUs. Biomech. Model Mechanobiol. 8, 111–127 (2009)

    Article  Google Scholar 

  6. Doblare, M., Garcia, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 35(1), 1–17 (2002)

    Article  Google Scholar 

  7. Fernandes, P., Rodrigues, H., Jacobs, C.: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput. Methods Biomech. Biomed. Eng. 2(2), 125–138 (1999)

    Article  Google Scholar 

  8. Jacobs, C.R., Simo, J.C., Beaupre, G.S., Carter, D.R.: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J. Biomech. 30(6), 603–613 (1997)

    Article  Google Scholar 

  9. Hart, R.T., Fritton, S.P.: Introduction to finite element based simulation of functional adaptation of cancellous bone. Forma 12, 277–299 (1997)

    Google Scholar 

  10. Elham, H., Iwona, J., Andrew, Y., YikHan, L., Tadeusz: Multiscale Modeling of Elastic Properties of Trabecular Bone. J. Royal Society Interface 9(72), 1654–1673 (2012)

    Article  Google Scholar 

  11. Vaughan, T.J., McCarthy, C.T., McNamara, L.M.: A three scale finite element investigation into the effects of tissue mineralization and lamellar organization in human cortical and trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 50–62 (2012)

    Google Scholar 

  12. Hulmes, D.J.S., Wess, T.J., Prockop, D.J., Fratzl, P.: Radial Packing, Order, and Disorder In Collagen Fibrils. Biophysical Journal 68(5), 1661–1670 (1995)

    Article  Google Scholar 

  13. Orgel, J.P.R.O., Irving, T.C., Miller, A., Wess, T.J.: Microfibrillar structure of type I collagen in situ. P. Natl. Acad. Sci. USA 103(24), 9001–9005 (2006)

    Article  Google Scholar 

  14. Aladin, D.M., Cheung, K.M., Ngan, A.H., Chan, D., Leung, V.Y., Lim, C.T., Luk, K.D., Lu, W.W.: Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28(4), 497–502 (2010)

    Google Scholar 

  15. Abdelwahed, B., Ridha, H.: Nanomechanical properties of mineralized collagen microfibrils based on finite elements method:biomechanical role of cross-links. Comp. Met. in Biomech. and Biomed. Eng (2012)

    Google Scholar 

  16. Khaterchi, H., Chamekh, A., BelHadjSalah, H.: Détermination des propriétés élastiques anisotropes homogènes de l’os spongieux à l’échelle nanoscopique (2012)

    Google Scholar 

  17. Hulmes, D.J.S.: Building Collagen Molecules, Fibrils, and Suprafibrillar Structures. Journal of Structural Biology 137, 2–10 (2002)

    Article  Google Scholar 

  18. Ciarelli, M.J., Goldstein, S.A., Kuhn, J.L., et al.: Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 9, 674–682 (1991)

    Article  Google Scholar 

  19. Pithioux, M., Lasaygues, P., Chabrand, P.: An alternative ultrasonic method for measuring the elastic properties of cortical bone. J. Biomech. 35, 961–968 (2002)

    Article  Google Scholar 

  20. Buskirk, W.C., Van Ashman, R.B.: The elastic moduli of bone in mechanical properties of bone. In: Joint ASME-ASCE Conf., vol. 45, pp. 131–143 (1981)

    Google Scholar 

  21. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall Series in Engineering of the Physical Sciences (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houda Khaterchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khaterchi, H., Chamekh, A., Belhadjsalah, H. (2013). Multi-scale Modelling of Orthotropic Properties of Trabecular Bone in Nanoscale. In: Haddar, M., Romdhane, L., Louati, J., Ben Amara, A. (eds) Design and Modeling of Mechanical Systems. Lecture Notes in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37143-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37143-1_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37142-4

  • Online ISBN: 978-3-642-37143-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics