Skip to main content

Eight-Fifth Approximation for the Path TSP

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

Abstract

We prove the approximation ratio 8/5 for the metric {s,t}-path-TSP, and more generally for shortest connected T-joins.

The algorithm that achieves this ratio is the simple “Best of Many” version of Christofides’ algorithm (1976), suggested by An, Kleinberg and Shmoys (2012), which consists in determining the best Christofides {s,t}-tour out of those constructed from a family \(\mathcal{F}_+\) of trees having a convex combination dominated by an optimal solution x * of the Held-Karp relaxation. They give the approximation guarantee \(\frac{\sqrt{5}+1}{2}\) for such an {s,t}-tour, which is the first improvement after the 5/3 guarantee of Hoogeveen’s Christofides type algorithm (1991). Cheriyan, Friggstad and Gao (2012) extended this result to a 13/8-approximation of shortest connected T-joins, for |T| ≥ 4.

The ratio 8/5 is proved by simplifying and improving the approach of An, Kleinberg and Shmoys that consists in completing x */2 in order to dominate the cost of “parity correction” for spanning trees. We partition the edge-set of each spanning tree in \(\mathcal{F}_+\) into an {s,t}-path (or more generally, into a T-join) and its complement, which induces a decomposition of x *. This decomposition can be refined and then efficiently used to complete x */2 without using linear programming or particular properties of T, but by adding to each cut deficient for x */2 an individually tailored explicitly given vector, inherent in x *.

A simple example shows that the Best of Many Christofides algorithm may not find a shorter {s,t}-tour than 3/2 times the incidentally common optima of the problem and of its fractional relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s-t path TSP. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (2012) (to appear)

    Google Scholar 

  2. Barahona, F., Conforti, M.: A construction for binary matroids. Discrete Mathematics 66, 213–218 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh (1976)

    Google Scholar 

  4. Cheriyan, J., Friggstad, Z., Gao, Z.: Approximating Minimum-Cost Connected T-Joins, arXiv:1207.5722v1 (cs.DS) (2012)

    Google Scholar 

  5. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press (2012)

    Google Scholar 

  6. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer polyhedra. Mathematical Programming 33, 1–27 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  8. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Mathematical Programming 5, 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press (2011)

    Google Scholar 

  10. Fulkerson, D.R.: Blocking Polyhedra. In: Graph Theory and Its Applications (Proceedings Advanced Seminar Madison, Wisconsin, 1969; Harris, B. (ed.)), pp. 93–112. Academic Press, New York (1970)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing 5, 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011)

    Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation Algorithms with Bounded Performance Guarantees for the Clustered Traveling Salesman Problem. Algorithmica 28, 422–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Operations Research 18, 1138–1162 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoogeveen, J.A.: Analysis of Christofides’ heuristic, some paths are more difficult than cycles. Operations Research Letters 10(5), 291–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korte, B., Vygen, J.: Combinatorial Optimization, 5th edn. Springer (2012)

    Google Scholar 

  18. Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó, North-Holland, Budapest, Amsterdam (1986)

    MATH  Google Scholar 

  19. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, pp. 560–569 (2011)

    Google Scholar 

  20. Mucha, M.: \(\frac{13}{9}\)-approximation for graphic TSP. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science, pp. 30–41 (2012)

    Google Scholar 

  21. Schrijver, A.: Combinatorial Optimization. Springer (2003)

    Google Scholar 

  22. Sebő, A., Vygen, J.: Shorter Tours by Nicer Ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs, arXiv:1201.1870v3 (cs.DM) (2012)

    Google Scholar 

  23. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study 13, 121–134 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sebő, A. (2013). Eight-Fifth Approximation for the Path TSP. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics