Skip to main content

Random Walks on Stochastic Temporal Networks

  • Chapter
  • First Online:
Temporal Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In the study of dynamical processes on networks, there has been intense focus on network structure—i.e., the arrangement of edges and their associated weights—but the effects of the temporal patterns of edges remains poorly understood. In this chapter, we develop a mathematical framework for random walks on temporal networks using an approach that provides a compromise between abstract but unrealistic models and data-driven but non-mathematical approaches. To do this, we introduce a stochastic model for temporal networks in which we summarize the temporal and structural organization of a system using a matrix of waiting-time distributions. We show that random walks on stochastic temporal networks can be described exactly by an integro-differential master equation and derive an analytical expression for its asymptotic steady state. We also discuss how our work might be useful to help build centrality measures for temporal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This condition holds in our setting, as we have assumed that the underlying graph \(\mathcal{G}\) of potential edges is strongly connected.

References

  1. Allesina, S., Pascual, M.: Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009)

    Article  MathSciNet  Google Scholar 

  2. Balescu, R.: Statistical Dynamics. Imperial College Press, London (1997)

    MATH  Google Scholar 

  3. Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  4. Beguerisse Díaz, M., Porter, M.A., Onnela, J.-P.: Competition for popularity in catalog networks. Chaos 20, 043101 (2010)

    Article  ADS  Google Scholar 

  5. Bergstrom, C., West, J., Wiseman, M.: The eigenfactor metrics. J. Neurosci. 28, 11433 (2008)

    Article  Google Scholar 

  6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: Proceedings of the 7th International Conference on World Wide Web (WWW), pp. 107–117, Elsevier, Amsterdam, The Netherlands (1998)

    Google Scholar 

  8. Caley, P., Becker, N.G., Philp, D.J.: The waiting time for inter-country spread of pandemic influenza. PLoS ONE 2, e143 (2007)

    Article  ADS  Google Scholar 

  9. Callaghan, T., Mucha, P.J., Porter, M.A.: Random walker ranking for NCAA Division IA football. Am. Math. Mon. 114, 761–777 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Chung, F.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, No. 92. American Mathematical Society, Providence (1996)

    Google Scholar 

  11. Delvenne, J.-C., Yaliraki, S., Barahona, M.: Stability of graph communities across time scales. Proc. Natl. Acad. Sci. USA 107, 12755 (2010)

    Article  ADS  Google Scholar 

  12. Eckmann, J.-P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101, 14333 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Evans, T.S.: Complex networks. Contemp. Phys. 45, 455 (2004)

    Article  ADS  Google Scholar 

  14. Fernández-Gracia, J., Eguíluz, V., San Miguel, M.: Update rules and interevent time distributions: slow ordering versus no ordering in the voter model. Phys. Rev. E 84, 015103 (2011)

    Article  ADS  Google Scholar 

  15. Ferreira, A.: On models and algorithms for dynamic communication networks: the case for evolving graphs. In: Proceedings of 4e Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (ALGOTEL2002), pp. 155–161, INRIA Press, Mèze, France (2002)

    Google Scholar 

  16. Ghosh, R., Lerman, K., Surachawala, T., Voevodski, K., Teng, S.-T.: Non-conservative diffusion and its application to social network analysis. arXiv:1102.4639 (2011)

    Google Scholar 

  17. Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving networks. Phys. Rev. E 83, 046120 (2011)

    Article  ADS  Google Scholar 

  18. Hethcote, H.W., Tudor, D.W.: Integral equation models for endemic infectious diseases. J. Math. Biol. 9, 37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoel, P., Port, S., Stone, C.: Introduction to Probability Theory. Houghton Mifflin, Boston, MA (1971)

    MATH  Google Scholar 

  20. Hoffmann, T., Porter, M.A., Lambiotte, R.: Generalized master equations for non-Poisson dynamics on networks. Phys. Rev. E 86, 046102 (2012)

    Article  ADS  Google Scholar 

  21. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97 (2012)

    Article  Google Scholar 

  22. Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  23. Iribarren, J.L., Moro, E.: Branching dynamics of viral information spreading. Phys. Rev. E 84, 046116 (2011)

    Article  ADS  Google Scholar 

  24. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166 (2011)

    Article  Google Scholar 

  25. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: KDD’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 538–543, ACM, New York, NY (2002)

    Google Scholar 

  26. Karrer, B., Newman, M.E.J.: A message passing approach for general epidemic models. Phys. Rev. E 82, 016101 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102(R) (2011)

    Google Scholar 

  28. Karsai, M., Kaski, K., Barabási, A.-L., Kertész, J.: Universal features of correlated bursty behaviour. Sci. Rep. 2, 397 (2012)

    Article  ADS  Google Scholar 

  29. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comp. Sys. Sci. 64, 820 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kenkre, V.M., Andersen, J.D., Dunlap, D.H., Duke, C.B.: Unified theory of the mobilities of photo-injected electrons in naphthalene. Phys. Rev. Lett. 62, 1165 (1989)

    Article  ADS  Google Scholar 

  31. Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Saramäki, J., Karsai, M.: Multiscale analysis of spreading in a large communication network. J. Stat. Mech. P03005 (2012)

    Google Scholar 

  32. Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World 18, 29 (2005)

    Google Scholar 

  33. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Min. Knowl. Disc. 7, 373 (2003)

    Article  MathSciNet  Google Scholar 

  34. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of blogspace. In: Proceedings of the 12th International Conference on World Wide Web (WWW), pp. 568–576, ACM, New York, NY (2003)

    Google Scholar 

  35. Lambiotte, R., Rosvall, M.: Ranking and clustering of nodes in networks with smart teleportation. Phys. Rev. E 85, 056107 (2012)

    Article  ADS  Google Scholar 

  36. Lambiotte, R., Ausloos, M., Thelwall, M.: Word statistics in blogs and RSS feeds: Towards empirical universal evidence. J. Informetrics 1, 277 (2007)

    Article  Google Scholar 

  37. Lambiotte, R., Sinatra, R., Delvenne, J.-C., Evans, T.S., Barahona, M., Latora, V.: Flow graphs: Interweaving dynamics and structure. Phys. Rev. E 84, 017102 (2011)

    Article  ADS  Google Scholar 

  38. Langville, A., Meyer, C.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    Google Scholar 

  39. Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.N.: A Poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. USA 105, 18153 (2008)

    Article  ADS  Google Scholar 

  40. Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Phys. Rev. E 83, 045102(R) (2011)

    Google Scholar 

  41. Montroll, E.W., Weiss, G.H.: Random walks on lattices. J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  42. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, London (2010)

    MATH  Google Scholar 

  44. Oliveira, J.G., Barabási, A.-L.: Darwin and Einstein correspondence patterns. Nature 437, 1251 (2005)

    Article  ADS  Google Scholar 

  45. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84, 016105 (2011)

    Article  ADS  Google Scholar 

  46. Radicchi, F.: Who is the best player ever? A complex network analysis of the history of professional tennis. PloS ONE 6, e17249 (2011)

    Article  ADS  Google Scholar 

  47. Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamics shape the sexual networks of Internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 107, 5706 (2010)

    Article  ADS  MATH  Google Scholar 

  48. Rosvall, M., Bergstrom, C.: Maps of information flow reveal community structure in complex networks. Proc. Natl. Acad. Sci. USA 105, 1118 (2008)

    Article  ADS  Google Scholar 

  49. Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273 (2002)

    MathSciNet  ADS  Google Scholar 

  50. Scher, H., Lax, M.: Stochastic transport in a disordered solid. I. Theor. Phys. Rev. B 7, 4491 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  51. Starnini, M., Baronchelli, A., Barrat, A., Pastor-Satorras, R.: Random walks on temporal networks. Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  52. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press, Princeton (2009)

    Google Scholar 

  53. Takaguchi, T., Masuda, N.: Voter model with non-Poissonian interevent intervals. Phys. Rev. E 84, 036115 (2011)

    Article  ADS  Google Scholar 

  54. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising Temporal Distance and Reachability in Mobile and Online Social Networks. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Online Social Networks (WOSN’09), pp. 118–124, ACM, New York, NY (2009)

    Google Scholar 

  55. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E 81, 055101(R) (2010)

    Google Scholar 

  56. Vazquez, A., Balazs, R., Andras, L., Barabási, A.-L.: Impact of non-Poisson activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This chapter is based on [20], which contains additional calculations and numerical simulations. RL would like to acknowledge support from FNRS (MIS-2012-F.4527.12) and Belspo (PAI Dysco). MAP acknowledges a research award (#220020177) from the James S. McDonnell Foundation and a grant from the EPSRC (EP/J001759/1). We thank T. Carletti, J.-C. Delvenne, P. J. Mucha, M. Rosvall, and J. Saramäki for fruitful discussions, and we thank P. Holme for helpful comments in his review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Lambiotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, T., Porter, M.A., Lambiotte, R. (2013). Random Walks on Stochastic Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics