Skip to main content

An Analysis Framework for Distributed Hierarchical Directories

  • Conference paper
Distributed Computing and Networking (ICDCN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7730))

Included in the following conference series:

Abstract

We provide a novel analysis framework for distributed hierarchical directories for an arbitrary set of dynamic (online) requests. We prove a general \({\cal O}(\eta\cdot \varphi \cdot \sigma^3 \cdot h)\) competitive ratio for any distributed hierarchical directory, where η is a write set size related parameter, ϕ and σ are stretch and growth related parameters, and h is the number of levels in the hierarchy. Through this framework, we give bounds for several known distributed directory protocols. In general network topologies, we obtain \({\cal O}(\log^2 n\cdot\log D)\) competitive ratio, where n and D are the number of nodes and the diameter, respectively, of the network. Moreover, we obtain \({\cal O}(\log D)\) competitive ratio in constant-doubling metric topologies. To the best of our knowledge, this is the first (competitive) dynamic analysis for distributed hierarchical directories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Kalai, G., Ricklin, M., Stockmeyer, L.J.: Lower bounds on the competitive ratio for mobile user tracking and distributed job scheduling. Theor. Comput. Sci. 130(1), 175–201 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attiya, H., Gramoli, V., Milani, A.: A Provably Starvation-Free Distributed Directory Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 405–419. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Awerbuch, B., Peleg, D.: Sparse partitions. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science (FOCS), vol. 2, pp. 503–513 (1990)

    Google Scholar 

  4. Awerbuch, B., Peleg, D.: Concurrent online tracking of mobile users. SIGCOMM Comput. Commun. Rev. 21(4), 221–233 (1991)

    Article  Google Scholar 

  5. Demmer, M.J., Herlihy, M.P.: The Arrow Distributed Directory Protocol. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 220–227 (2001)

    Google Scholar 

  8. Herlihy, M., Kuhn, F., Tirthapura, S., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol. Theor. Comp. Sys. 39(6), 875–901 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distributed Computing 20(3), 195–208 (2007)

    Article  Google Scholar 

  10. Kuhn, F., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 294–301 (2004)

    Google Scholar 

  11. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. Syst. 7(1), 61–77 (1989)

    Article  MathSciNet  Google Scholar 

  13. Sharma, G., Busch, C., Srinivasagopalan, S.: Distributed transactional memory for general networks. In: Proceedings of the 2012 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1045–1056 (2012)

    Google Scholar 

  14. Zhang, B., Ravindran, B.: Brief Announcement: Relay: A Cache-Coherence Protocol for Distributed Transactional Memory. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 48–53. Springer, Heidelberg (2009)

    Google Scholar 

  15. Zhang, B., Ravindran, B.: Dynamic analysis of the relay cache-coherence protocol for distributed transactional memory. In: Proceedings of the 2010 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–11 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharma, G., Busch, C. (2013). An Analysis Framework for Distributed Hierarchical Directories. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds) Distributed Computing and Networking. ICDCN 2013. Lecture Notes in Computer Science, vol 7730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35668-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35668-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35667-4

  • Online ISBN: 978-3-642-35668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics