Skip to main content

Microbial Glycoside Hydrolases for Biomass Utilization in Biofuels Applications

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

Renewable biomass is predicted to have the potential to meet at least a quarter of the world demand for transportation fuel, but to do so both terrestrial lignocellulosic as well as marine algal resources need to be efficiently utilized. In the processes where these biomasses are converted into different types of energy carriers (for example fuel-alcohols e.g. ethanol or butanol) microbial glycoside hydrolases (GHs) have a role in the saccharification process. During saccharification polymeric carbohydrate resources (e.g. starch, cellulose or hemicellulose) are hydrolyzed into mono and oligosaccharides that can be utilized by the organism selected to ferment these carbohydrates into the desired energy-carrier. This chapter aims to shed light on different processing alternatives for the conversion of lignocellulose or algal starch into mono or oligosaccharides, and what roles the microbial GHs have as processing aids in these conversions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken D, Antizar-Ladislao B (2012) Achieving green solution: limitations and focus points for sustainable algal fuels. Energies 5:1613–1647

    Article  CAS  Google Scholar 

  • An H, Wilhelm WE, Searcy SW (2011) Biofuel and petroleum-based supply chain research: a literature review. Biomass Bioenergy 35:3763–3774

    Article  Google Scholar 

  • Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J (2007) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb Technol 43:214–219

    Article  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opinion Biotechnol 18:237–245

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brownell HH, Yu EKC, Saddler JN (1986) Steam explosion pretreatment of wood: effect of chip size, acid, moisture content, and pressure drop. Biotechnol Bioeng 28:792–801

    Article  PubMed  CAS  Google Scholar 

  • Cadoche L, Lopez GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30:153–157

    Article  CAS  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AS, vanBeilen J, Moller R, Clayton D (2007) Micro- and macro-algae: utility for industrial applications. In: Bowles (ed) Outputs from the EPOBIO project, CPL press, Berks, UK

    Google Scholar 

  • Chandel AK, Singh OM (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering. Appl Microbiol Biotechnol 89:1289–1303

    Article  PubMed  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476

    Article  CAS  Google Scholar 

  • Chen S, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renewable Energy 36:3541–3549

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and Chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  PubMed  CAS  Google Scholar 

  • Corbett K, Fordham-Skelton AP, Gatehouse JA, Davis BG (2001) Tailoring the substrate specificity of the β-glycosidase from the thermophilic archaeon Sulfolobus solfataricus. FEBS Lett 509:355–360

    Article  PubMed  CAS  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineeringof Geobacillus thermoglucosidasius for highyield ethanol production. Met Eng 11:398–408

    Article  CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Conv Manag 51:2738–2749

    Article  CAS  Google Scholar 

  • Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel ME (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227

    Article  PubMed  CAS  Google Scholar 

  • Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid- catalysed steam explosion. Bioresour Technol. 86:105–115

    Article  PubMed  CAS  Google Scholar 

  • Euphrosine-Moy V, Lasry T, Bes RS, Molinier J, Mathieu J (1991) Degradation of poplar lignin with ozone. Ozone Sci Eng 13:239–248

    Article  CAS  Google Scholar 

  • European Biofuels Technology Platform (2009) Biofuel Production (http://www.biofuelstp.eu/fuelproduction.html, accessed 2012-06-26)

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Ann Rev Biochem 79:655–681

    Article  PubMed  CAS  Google Scholar 

  • Fox DJ, Gray PP, Dunn NW, Warwick LM (1989) Comparison of alkali and steam (acid) pretreatments of lignocellulosic materials to increase enzymic susceptibility: evaluation under optimized pretreatment conditions. J Chem Technol Biotechnol 44:135–146

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng/Biotechnol 108:41–65

    Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Als Roh-Und Werkstoff 57:191–202

    Article  CAS  Google Scholar 

  • Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63:1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainabledevelopment. Renew Sustain Energy Rev 14:842–848

    Article  CAS  Google Scholar 

  • Gowen CM, Fong SS (2010) Exploring biodiversity for cellulosic biofuel production. Chem Biodivers 7:1086–1097

    Article  PubMed  CAS  Google Scholar 

  • Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8:274–280

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  • Harris P-V, Welner D, McFarland K-C, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  PubMed  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Micoralgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micor and macroalgal biomass: a renewable source for bioethanol. Biores Technol 102:186–193

    Article  CAS  Google Scholar 

  • Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agricult Wastes 17:229–233

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang Y-HP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15:4950–4962

    Article  CAS  Google Scholar 

  • Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3:199–208

    Article  CAS  Google Scholar 

  • Kumakura M, Kojima T, Kaetsu I (1982) Pretreatment of lignocellulosic wastes by combination of irradiation and mechanical crushing. Biomass 2:299–308

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kurakake M, Ide N, Komaki T (2007) Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr Microbiol 54: 424–428

    Google Scholar 

  • Koukiekolo R, Cho H-Y, Kosugi A, Inui M, Yukawa H, Doi RH (2005) Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol 71:3504–3511

    Article  PubMed  CAS  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar wnwnergy utilization. PNAS 103:15729–15735

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, Wang Q, Gao C, Wang Z, Qi Q (2011) The effect of cyclodextrins on the ethanol tolerance of microorganisms suggests potential application. J Ind Microbiol Biotechnol 38:753–756

    Article  PubMed  CAS  Google Scholar 

  • MacDonald DG, Bakhshi NN, Mathews JP, Roychowdhurry A, Bajpai P, Moo-Young M (1983) Alkali treatment of corn stover to improve sugar production by enzymatic hydrolysis. Biotechnol Bioeng 25:2067–2076

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432

    Article  CAS  Google Scholar 

  • Mathew GM, Sukumaran RK, Singhania RR, Pandey A (2008) Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res 67:898–907

    CAS  Google Scholar 

  • Matsumoto N, Fukushi O, Miyanaga M, Kakihara K, Nakajima E, Yoshizumi H (1982) Industrialization of a noncooking system for alcoholic fermentation from grains. Agric Biol Chem 46:1549–1558

    Article  CAS  Google Scholar 

  • Matushika A, Watanabe S, Kodaki T, Makino K, Sawayama S. (2008) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP + -dependent xylitol dehydrogenase and xylulokinase. J Biosci Bioeng 105: 296–299

    Google Scholar 

  • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009) Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP + -dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818–3822

    Article  PubMed  CAS  Google Scholar 

  • Mba Medie F, Davies GJ, Drancourt M, Henrissat B (2012) Genome analysis highlight the different biological roles of cellulases. Nature Rev Microbiol 10:227–234

    Article  Google Scholar 

  • Meeuse BJD, Smith BN (1962) A note on the amylolytic breakdown of some raw algal starches. Planta 57:624–635

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    Article  CAS  Google Scholar 

  • Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65

    Article  PubMed  CAS  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105:87–100

    Article  PubMed  Google Scholar 

  • Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari L (2004) Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 117:1–17

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of processstreams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  PubMed  CAS  Google Scholar 

  • Panagiotou G, Christakopoulos P (2004) NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum. J Biosci Bioeng 97:299–304

    PubMed  CAS  Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27:613–620

    Article  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  PubMed  CAS  Google Scholar 

  • Platts (2011) IEA says biofuels can displace 27% of transportation fuels by 2050. (http://www.platts.com/RSSFeedDetailedNews/RSSFeed/Oil/6017103; accessed 26-06-2012)

  • Robertson GH, Wong DWS, Lee CC, Wagschal K, Smith MR, Orts WJ (2006) Native or raw starch digestion: a key step in energy efficient biorefining of grain. J Agricult Food Chem 54:353–365

    Article  CAS  Google Scholar 

  • Rodjaroen S, Juntawong N, Mahakhant A, Miyamoto K (2007) High biomass production and starch accumulation in native green algal strains cyanobacterial strains of Thailand Kasetsart. J Nat Sci 41:570–575

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23:1431–1442

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • Shigechi H, Fujita Y, Koh J, Ueda M, Fukuda H, Kondo A (2000) Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem Eng J 18:149–153

    Article  Google Scholar 

  • Shrank S, Farahmand F (2011) Biofuels regain momentum. Worldwatch Institute (http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy, accessed 26-06-2012)

  • Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic, London

    Google Scholar 

  • Stuart AS, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Current Opinion Biotechnol 21:277–286

    Article  Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy approach for algal biofuel production in united States. Energy Policy 38:4897–4902

    Article  CAS  Google Scholar 

  • Tassinari T, Macy C (1977) Differential speed two roll mill pretreatment of cellulosic materials for enzymatic hydrolysis. Biotechnol Bioeng 19:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Turner P, Mamo G, Nordberg Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb cell fact 6(9):1–23

    Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn S-J, Liu Z, Zhai H, Sorlie M, Eijsink V-G (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  PubMed  CAS  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480 (http://dx.doi.org/10.1016/j.biotechadv.02.03.2012)

    Google Scholar 

  • Van Wyk N, den Haan R, van Zyl WH (2010) Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(5):1813–1820

    Google Scholar 

  • Van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    PubMed  Google Scholar 

  • Varga E, Klinke HB, Reczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574

    Article  PubMed  CAS  Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2:4

    Article  PubMed  Google Scholar 

  • Yernool DA, McCarthy JK, Eveleigh DE, Bok JD (2000) Cloning and characterization of the glucooligosaccharide catabolic pathway betaglucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol 182:5172–5179

    Article  PubMed  CAS  Google Scholar 

  • Zemke-White WL, Clements KD (1999) Chlorophyte and rhodophyte starches as factors in diet choice by marine herbivorous fish. J Exp Marine Biol Ecol 240:137–149

    Article  Google Scholar 

  • Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54:79–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Swedish research council Formas (project 243-2008-2196) and (229-2009-1527, for the collaborative research program SureTech) and the EU FP7 research-program AMYLOMICS is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Nordberg Karlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mamo, G., Faryar, R., Karlsson, E.N. (2013). Microbial Glycoside Hydrolases for Biomass Utilization in Biofuels Applications. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_7

Download citation

Publish with us

Policies and ethics