Skip to main content

Community Detection in Social and Biological Networks Using Differential Evolution

  • Conference paper
Learning and Intelligent Optimization (LION 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7219))

Included in the following conference series:

Abstract

The community detection in complex networks is an important problem in many scientific fields, from biology to sociology. This paper proposes a new algorithm, Differential Evolution based Community Detection (DECD), which employs a novel optimization algorithm, differential evolution (DE) for detecting communities in complex networks. DE uses network modularity as the fitness function to search for an optimal partition of a network. Based on the standard DE crossover operator, we design a modified binomial crossover to effectively transmit some important information about the community structure in evolution. Moreover, a biased initialization process and a clean-up operation are employed in DECD to improve the quality of individuals in the population. One of the distinct merits of DECD is that, unlike many other community detection algorithms, DECD does not require any prior knowledge about the community structure, which is particularly useful for its application to real-world complex networks where prior knowledge is usually not available. We evaluate DECD on several artificial and real-world social and biological networks. Experimental results show that DECD has very competitive performance compared with other state-of-the-art community detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  2. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4 (2003)

    Google Scholar 

  3. Chen, G., Wang, Y., Yang, Y.: Community detection in complex networks using immune clone selection algorithm. International Journal of Digital Content Technology and its Applications 5, 182–189 (2011)

    MathSciNet  Google Scholar 

  4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)

    Article  Google Scholar 

  5. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2001)

    Article  Google Scholar 

  6. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72, 027104 (2005)

    Article  Google Scholar 

  7. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Computer Communications Review 29, 251–262 (1999)

    Article  Google Scholar 

  8. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104, 36–41 (2007)

    Article  Google Scholar 

  9. Freeman, L.: A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  10. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Na 440, 631–636 (2006)

    Google Scholar 

  11. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)

    Article  Google Scholar 

  12. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guimera, R., Amaral, L.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  14. Kukkonen, S., Lampinen, J.: Constrained real-parameter optimization with generalized differential evolution. In: Proceedings of the Congress on Evolutionary Computation (CEC 2006). IEEE Press, Sheraton Vancouver Wall Centre Hotel, Vancouver (2006)

    Google Scholar 

  15. Li, Z., Zhang, S., Wang, R., Zhang, X., Chen, L.: Quantitative function for community detection. Physical Review E 77, 036109 (2008)

    Article  Google Scholar 

  16. Liu, Y., Slotine, J., Barabasi, A.: Controllability of complex networks. Nature 473, 167–173 (2011)

    Article  Google Scholar 

  17. Mezura-Montes, E., Miranda-Varela, M., Gómez-Ramón, R.: Differential evolution in constrained numerical optimization: An empirical study. Information Sciences 180, 4223–4262 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artificial Intelligence Review 33, 61–106 (2010)

    Article  Google Scholar 

  19. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  21. Pizzuti, C.: GA-Net: A Genetic Algorithm for Community Detection in Social Networks. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. of Graph Alg. and App. Bf 10, 284–293 (2004)

    Google Scholar 

  23. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 37, 825–831 (2009)

    Article  Google Scholar 

  24. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proceedings of the National Academy of Sciences 101, 2658–2663 (2004)

    Article  Google Scholar 

  25. Rosvall, M., Bergstrom, C.: An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences 104, 7327–7331 (2007)

    Article  Google Scholar 

  26. Scott, J.: Social network analysis: A Handbook. Sage Publications, London (2000)

    Google Scholar 

  27. Sohaee, N., Forst, C.V.: Modular clustering of protein-protein interaction networks. In: 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB (2010)

    Google Scholar 

  28. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex networks. Pattern Recognition Letters 31, 413–421 (2009)

    Article  Google Scholar 

  29. Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  31. Tasgin, M., Bingol, H.: Community detection in complex networks using genetic algorithm. In: Proceedings of the European Conference on Complex Systems (2006)

    Google Scholar 

  32. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)

    Google Scholar 

  33. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15, 55–66 (2011)

    Article  Google Scholar 

  34. Yang, Y., Sun, Y., Pandit, S., Chawla, N.V., Han, J.: Is objective function the silver bullet? a case study of community detection algorithms on social networks. In: International Conference on Advances in Social Network Analysis and Mining, pp. 394–397 (2011)

    Google Scholar 

  35. Yeu, Y., Ahn, J., Yoon, Y., Park, S.: Protein complex discovery from protein interaction network with high false-positive rate. In: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics 2011, EvoBio 2011 (2011)

    Google Scholar 

  36. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jia, G. et al. (2012). Community Detection in Social and Biological Networks Using Differential Evolution. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34413-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34412-1

  • Online ISBN: 978-3-642-34413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics