Skip to main content

First-Principles Study of Adsorption of Alkali Metals (Li, Na, K) on Graphene

  • Conference paper
Advanced Nanomaterials and Nanotechnology

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 143))

Abstract

We have performed the first-principles study of adsorption of alkali metals like lithium, sodium and potassium on graphene. As first-principles methods we have chosen Hartree–Fock method and density functional theory (DFT) method. We have studied the variation of energy of grapheme clusters on sizes of the graphene clusters. Our findings show that the energy of graphene clusters increases with the size of the clusters and for the cluster size more than 30 carbon atoms the energy per carbon atom remains almost constant. This shows that the graphene clusters are stable with respect to energy for the larger size of clusters. The adsorption of alkali metals on the H-grpahene clusters have been studied. The adsorption energy of alkali metal atoms (Li, Na and K) on H-graphene increases on increasing the size of H-graphene cluster. The dependence of the computed adsorption energies of Li, Na and K atoms on the size of H-graphene clusters and the presence of large dipole moments in the adatoms-H-graphene system exhibit the ionic character of the alkali metal adatom-H-graphene interaction. Our findings on the adsorption energy of the alkali metals on H-graphene clusters agree with the previously reported data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  4. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  CAS  Google Scholar 

  5. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  Google Scholar 

  6. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)

    Article  CAS  Google Scholar 

  7. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    Article  CAS  Google Scholar 

  8. Brumfiel G (2010) Andre Geim: in praise of graphene. Nature. doi:10.1038/news.2010.525

  9. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  10. M. Gibertini, A. Tomadin, M. Polini, A. Fasolino, M.I. Katsnelson, Electron density distribution and screening in rippled graphene sheets. Phys. Rev. B 81, 125437–125449 (2010)

    Article  Google Scholar 

  11. R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114–243117 (2009)

    Article  Google Scholar 

  12. K.T. Chan, J.B. Neaton, M.L. Cohen, First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77, 235430 (2008)

    Article  Google Scholar 

  13. Y. Mao, J. Yuan, J. Zhong, Density functional calculation of transition metal adatom adsorption on graphene. J. Phys.: Condens. Matter 20, 115209 (2008)

    Google Scholar 

  14. L. Sheng, Y. Ono, T. Taketsugu, Ab initio study of Xe adsorption on Graphene. J. Phys. Chem. C 114(8), 3544–3548 (2010)

    Article  CAS  Google Scholar 

  15. M. Vanin, J.J Mortensen, A.K. Kelkkanen, J.M. Garcia-Lastra, K.S. Thygesen, K.W. Jacobsen, Graphene on metals: a van der Waals density functional theory. Phy. Rev. B 81 081408(R) (2010)

    Google Scholar 

  16. R. Varns, P. Strange, Stability of gold atoms and dimmers adsorbed on graphene. J. Phys.:Condens. Matter 20, 225005 (2008)

    Google Scholar 

  17. O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)

    Article  Google Scholar 

  18. M. Zhou, Y.H. Lu, Y.Q. Cai, C. Zhang, Y.P. Feng, Adsorption of gas molecules on transition metal embedded graphene: a search for high –performance graphene-based catalysts and gas sensors. Nanotechnology 22, 385502 (2011)

    Article  Google Scholar 

  19. M. Caragiu, S. Finberg, Alkali metal adsorption on graphite: a review. J. Phys.: Condens. Matter 17, R995–R1024 (2005)

    CAS  Google Scholar 

  20. A. Chambers, C. Park, T.K. Baker, N.M. Rodriguez, Hydrogen storage in graphite nanofibers. J. Phys. Chem. B 102, 4253–4256 (1998)

    Article  CAS  Google Scholar 

  21. G.E. Froudakis, Hydrogen interaction with carbon nanotubes: a review of ab initio studies. J. Phys.: Condens. Matter 14, R453 (2002)

    Google Scholar 

  22. O. Gulseren, T. Yildirim, S. Ciraci (2002) Effects of hydrogen adsorption on single-wall carbon nanotubes: metallic hydrogen. Phys. Rev. B 66, 121401(R)

    Google Scholar 

  23. Q. Wang, J.K. Johnson, Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J. Chem. Phys. 110, 577 (1999)

    Article  CAS  Google Scholar 

  24. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307 (1999)

    Article  CAS  Google Scholar 

  25. P. Chen, X. Wu, J. Lin, K.L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999)

    Article  CAS  Google Scholar 

  26. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007)

    Article  CAS  Google Scholar 

  27. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008)

    Article  CAS  Google Scholar 

  28. S.M. Blinder, Basic concepts of self-consistent-field theory. Am. J. Phys. 33(6), 431–443 (1965)

    Article  CAS  Google Scholar 

  29. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  30. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  Google Scholar 

  31. A.D. Becke, Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  32. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004

    Google Scholar 

  34. A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das, Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J. Phys. Chem. C 114, 10297–10301 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the partial support for this work by The Abdus Salam International Center for Theoretical Physics (ICTP), Trieste, Italy through Office of External Activities Net-56 and National Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Adhikari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oli, B.D., Bhattarai, C., Nepal, B., Adhikari, N.P. (2013). First-Principles Study of Adsorption of Alkali Metals (Li, Na, K) on Graphene. In: Giri, P.K., Goswami, D.K., Perumal, A. (eds) Advanced Nanomaterials and Nanotechnology. Springer Proceedings in Physics, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34216-5_51

Download citation

Publish with us

Policies and ethics