Skip to main content

Mechanisms for Complex Systems Engineering Through Artificial Development

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We argue that artificial development is an appropriate means of approaching complex systems engineering. Artificial development works via the inclusion of mechanisms that enhance the evolvability of a design space. Two of these mechanisms, regularities and adaptive feedback with the environment, are discussed. We concentrate on the less explored of the two: adaptive feedback. A concrete example is presented and applied to a simple artificial problem resembling vasculogenesis. It is shown that the use of a local feedback function substantively improves the efficacy of a machine learner on the problem. Further, inclusion of this adaptive feedback eliminates the sensitivity of the machine learner to a system parameter previously shown to correspond to problem hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One proposed definition from Lipson defines “structural regularities” as an “inverse Kolmogorov complexity”, that is, the amount by which a structural description could be compressed by a Universal Turing Machine [26]. Unfortunately, Kolmogorov complexity is generally uncomputable, and simpler forms of compression are often poorly correlated [20]. Further, the attempt to approximate the Kolmogorov complexity of evolved designs does not figure largely in current AD literature. Thus, we believe that most authors are referencing something quite different from Lipson’s definition when discussing “regularities”.

References

  1. Arthur, W.: The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol. Dev. 6(4), 282–288 (2004)

    Article  MathSciNet  Google Scholar 

  2. Banzhaf, W., Pillay, N.: Why complex systems engineering needs biological development. Complexity 13(2), 12–21 (2007)

    Article  Google Scholar 

  3. Britton, N., Brown, A.: An Illustrated Ora of the Northern United States, Canada and the British Possessions, vol. 2. C. Scribner’s Sons, New York (1913)

    Google Scholar 

  4. Coen, E.: The Art of Genes: How Organisms Make Themselves. Oxford University Press, Oxford (1999)

    Google Scholar 

  5. Crews, D., Bull, J.: Sex determination: some like it hot (and some don’t). Nature 451, 527–528 (2008). doi:10.1038/451527a

    Google Scholar 

  6. Dawkins, R.: Climbing Mount Improbable. W.W. Norton & Company, New York (1996)

    Google Scholar 

  7. Devert, A., Bredeche, N., Schoenauer, M.: Artificial ontogeny for truss structure design. In: IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, vol. 0, pp. 298–305 (2008). doi:10.1109/SASOW.2008.53

  8. Federici, D., Downing, K.: Evolution and development of a multicellular organism: scalability, resilience, and neutral complexification. Artif. Life 12(3), 381–409 (2006)

    Article  Google Scholar 

  9. Gilbert, S.F., Epel, D.: Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution. Sinauer Associates Inc., Sunderland (2009)

    Google Scholar 

  10. Gould, S.J.: The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press, Cambridge (2002)

    Google Scholar 

  11. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for genetic neural networks. In: GECCO ’96: Proceedings of the First Annual Conference on Genetic Programming, pp. 81–89. MIT Press, Cambridge, MA, USA (1996)

    Google Scholar 

  12. Harding, S., Miller, J.: The dead state: a comparison between direct and developmental encodings. In: GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (2006)

    Google Scholar 

  13. Hendrikse, J.L., Parsons, T., Hallgrmsson, B.: Evolvability as the proper focus of evolutionary developmental biology. Evol. Dev. 9(4), 393–401 (2007). doi:10.1111/j.1525-142X.2007.00176.x

    Google Scholar 

  14. Hornby, G.: Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design. In: GECCO ’05: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1729–1736. ACM, New York, NY, USA (2005). doi:10.1145/1068009.1068297

  15. Huttenlocher, P.R.: Neural Plasticity: The Effects of Environment on the Development of the Cerebral Cortex. Harvard University Press, Cambridge (2002)

    Google Scholar 

  16. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific, Singapore (2001)

    Google Scholar 

  17. Kicinger, R., Arciszewski, T., Jong, K.A.D.: Morphogenic evolutionary design: cellular automata representations in topological structural design. In: Parmee I.C. (ed.) Adaptive Computing in Design and Manufacture VI. Springer-Verlag (2004)

    Google Scholar 

  18. Kicinger, R., Arciszewski, T., Jong, K.A.D.: Evolutionary computation and structural design: a survey of the state of the art. Comput. Struct. 83(23–24), 1943–1978 (2005)

    Article  Google Scholar 

  19. Kowaliw, T.: A good number of forms fairly beautiful. Ph.D. thesis, Concordia University, Montréal, QC, Canada (2007)

    Google Scholar 

  20. Kowaliw, T.: Measures of complexity for artificial embryogeny. In: GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 843–850. ACM, New York, NY, USA (2008). doi:10.1145/1389095.1389259

  21. Kowaliw, T., Banzhaf, W.: Augmenting artificial development with local fitness. In: Tyrrell A. (ed.) IEEE Congress on Evolutionary Computation (CEC), 2009, pp. 316–323. doi:10.1109/CEC.2009.4982964

  22. Kowaliw, T., Grogono, P., Kharma, N.: Bluenome: a novel developmental model of artificial morphogenesis. In: Deb, K. et al. (eds.) GECCO ’04: Proceedings of the 6th Annual Conference on Genetic and Evolutionary Computation. Springer-Verlag (2004)

    Google Scholar 

  23. Kowaliw, T., Grogono, P., Kharma, N.: Environment as a spatial constraint on the growth of structural form. In: GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1037–1044. ACM, New York, NY, USA (2007). doi:10.1145/1276958.1277163

  24. Kowaliw, T., Grogono, P., Kharma, N.: The evolution of structural form through artificial embryogeny. In: IEEE Symposium on Artificial Life, ALIFE ’07, pp. 425–432. IEEE (2007). doi:10.1109/ALIFE.2007.367826

  25. Lindenmayer, A.: Mathematical models for cellular interaction in development. J. Theor. Biol. 18, 280–315 (1968)

    Article  Google Scholar 

  26. Lipson, H.: Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol. Phys. Chem. 7, 125–128 (2007)

    Article  Google Scholar 

  27. Mech, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: SIGGRAPH ’96 Proceedings, vol. 30, pp. 397–410 (1996)

    Google Scholar 

  28. Merks, R., Roeland, M., Hoekstra, A., Kaandorp, J., Sloot, P., Hogeweg, P.: Problem-solving environments for biological morphogenesis. Comput. Sci. Eng. 8(1), 61–72 (2006). doi:10.1109/MCSE.2006.11

    Google Scholar 

  29. Miller, J.: Evolving a self-repairing, self-regulating, french flag organism. In: Deb, K. et al. (eds.) GECCO ’04: Proceedings of the 6th Annual Conference on Genetic and Evolutionary Computation, pp. 129–139. Springer-Verlag (2004)

    Google Scholar 

  30. Mulder, B.: On growth and force. Science 322, 1643–1644 (2008)

    Article  Google Scholar 

  31. Newman, S.A., Forgacs, G., Müller, G.B.: Before programs: the physical origination of multicellular forms. Int. J. Dev. Biol. 50, 289–299 (2006). doi:10.1387/ijdb.052049sn

    Google Scholar 

  32. Rieffel, J., Pollack, J.: The emergence of ontogenic scaffolding in a stochastic development environment. In: Deb, K. et al. (eds.) GECCO ’04: Proceedings of the 6th Annual Conference on Genetic and Evolutionary Computation. Springer-Verlag (2004)

    Google Scholar 

  33. Sen, S., Day, A.: Modelling trees and their interaction with the environment: a survey. Comput. Graph. 29(5), 805–817 (2005). doi:10.1016/j.cag.2005.08.025

    Google Scholar 

  34. Seys, C., Beer, R.: Effect of encoding on the evolvability of an embodied neural network. In: GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (2006)

    Google Scholar 

  35. Stanley, K., D’Ambrosio, D., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009). doi:10.1162/artl.2009.15.2.15202

    Google Scholar 

  36. Steiner, T., Jin, Y., Sendhoff, B.: A cellular model for the evolutionary development of lightweight material with an inner structure. In: GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 851–858. ACM (2008). doi:10.1145/1389095.1389260

  37. Tufte, G., Haddow, P.C.: Extending artificial development: exploiting environmental information for the achievement of phenotypic plasticity. In: Evolvable Systems: From Biology to Hardware (2007)

    Google Scholar 

  38. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. Royal Soc. B 237, 37–72 (1952)

    Article  Google Scholar 

  39. Wolpert, L., Dover, G.: Positional information and pattern formation. Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 295(1078), 441–450 (1981)

    Google Scholar 

  40. Yogev, O., Shapiro, A., Antonsson, E.: Modularity and symmetry in computational embryogeny. In: GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1151–1152. ACM, New York, NY, USA (2008). doi:10.1145/1389095.1389323

Download references

Acknowledgments

TK and WB would like to thank Nature for billions of years of tireless effort. Smashing stuff! In addition, NSERC of Canada supported WB by Discovery Grant RGPIN 283304-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Kowaliw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kowaliw, T., Banzhaf, W. (2012). Mechanisms for Complex Systems Engineering Through Artificial Development. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics