Skip to main content

On Computing Minimal Equivalent Subformulas

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

A propositional formula in Conjunctive Normal Form (CNF) may contain redundant clauses — clauses whose removal from the formula does not affect the set of its models. Identification of redundant clauses is important because redundancy often leads to unnecessary computation, wasted storage, and may obscure the structure of the problem. A formula obtained by the removal of all redundant clauses from a given CNF formula \({\mathcal{F}}\) is called a Minimal Equivalent Subformula (MES) of \({\mathcal{F}}\). This paper proposes a number of efficient algorithms and optimization techniques for the computation of MESes. Previous work on MES computation proposes a simple algorithm based on iterative application of the definition of a redundant clause, similar to the well-known deletion-based approach for the computation of Minimal Unsatisfiable Subformulas (MUSes). This paper observes that, in fact, most of the existing algorithms for the computation of MUSes can be adapted to the computation of MESes. However, some of the optimization techniques that are crucial for the performance of the state-of-the-art MUS extractors cannot be applied in the context of MES computation, and thus the resulting algorithms are often not efficient in practice. To address the problem of efficient computation of MESes, the paper develops a new class of algorithms that are based on the iterative analysis of subsets of clauses. The experimental results, obtained on representative problem instances, confirm the effectiveness of the proposed algorithms. The experimental results also reveal that many CNF instances obtained from the practical applications of SAT exhibit a large degree of redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011)

    MATH  MathSciNet  Google Scholar 

  2. Ausiello, G., D’Atri, A., Saccà, D.: Minimal representation of directed hypergraphs. SIAM J. Comput. 15(2), 418–431 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-determined constraint satisfaction problems. In: IJCAI, pp. 276–281 (1993)

    Google Scholar 

  4. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: FMCAD, pp. 37–40 (2011)

    Google Scholar 

  5. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation 4, 75–97 (2008)

    MATH  Google Scholar 

  6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  7. Boufkhad, Y., Roussel, O.: Redundancy in random SAT formulas. In: AAAI, pp. 273–278 (2000)

    Google Scholar 

  8. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. INFORMS Journal on Computing 3(2), 157–168 (1991)

    Article  MATH  Google Scholar 

  9. Chmeiss, A., Krawczyk, V., Sais, L.: Redundancy in CSPs. In: ECAI, pp. 907–908 (2008)

    Google Scholar 

  10. Choi, C.W., Lee, J.H.-M., Stuckey, P.J.: Removing propagation redundant constraints in redundant modeling. ACM Trans. Comput. Log. 8(4) (2007)

    Google Scholar 

  11. de Siqueira, N.J.L., Puget, J.-F.: Explanation-based generalisation of failures. In: ECAI, pp. 339–344 (1988)

    Google Scholar 

  12. Dechter, A., Dechter, R.: Removing redundancies in constraint networks. In: AAAI, pp. 105–109 (1987)

    Google Scholar 

  13. Dershowitz, N., Hanna, Z., Nadel, A.: A Scalable Algorithm for Minimal Unsatisfiable Core Extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fourdrinoy, O., Grégoire, É., Mazure, B., Saïs, L.: Eliminating Redundant Clauses in SAT Instances. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 71–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. González, S.M., Meseguer, P.: Boosting MUS Extraction. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 285–299. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Grégoire, É., Mazure, B., Piette, C.: MUST: Provide a Finer-Grained Explanation of Unsatisfiability. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 317–331. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of Boolean clauses. In: ICTAI, pp. 74–83 (November 2008)

    Google Scholar 

  19. Grimm, S., Wissmann, J.: Elimination of Redundancy in Ontologies. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 260–274. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Hammer, P.L., Kogan, A.: Optimal compression of propositional horn knowledge bases: Complexity and approximation. Artif. Intell. 64(1), 131–145 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: ECAI, pp. 113–117 (2006)

    Google Scholar 

  22. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing Rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained problems. In: AAAI, pp. 167–172 (2004)

    Google Scholar 

  24. Kullmann, O.: Constraint satisfaction problems in clausal form II: Minimal unsatisfiability and conflict structure. Fundam. Inform. 109(1), 83–119 (2011)

    MATH  MathSciNet  Google Scholar 

  25. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications. In: ISMVL, pp. 9–14 (2010)

    Google Scholar 

  28. Marques-Silva, J., Lynce, I.: On Improving MUS Extraction Algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FMCAD, pp. 121–128 (October 2010)

    Google Scholar 

  30. Niepert, M., Gucht, D.V., Gyssens, M.: Logical and algorithmic properties of stable conditional independence. Int. J. Approx. Reasoning 51(5), 531–543 (2010)

    Article  MATH  Google Scholar 

  31. Piette, C.: Let the solver deal with redundancy. In: ICTAI, pp. 67–73 (2008)

    Google Scholar 

  32. Piette, C., Hamadi, Y., Saïs, L.: Efficient Combination of Decision Procedures for MUS Computation. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 335–349. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Scholl, C., Disch, S., Pigorsch, F., Kupferschmid, S.: Computing Optimized Representations for Non-convex Polyhedra by Detection and Removal of Redundant Linear Constraints. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 383–397. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. To, S.T., Son, T.C., Pontelli, E.: On the use of prime implicates in conformant planning. In: AAAI (2010)

    Google Scholar 

  37. To, S.T., Son, T.C., Pontelli, E.: Conjunctive representations in contingent planning: Prime implicates versus minimal CNF formula. In: AAAI (2011)

    Google Scholar 

  38. van Maaren, H., Wieringa, S.: Finding Guaranteed MUSes Fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belov, A., Janota, M., Lynce, I., Marques-Silva, J. (2012). On Computing Minimal Equivalent Subformulas. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics