Skip to main content

A Retinal Mechanism Based Color Constancy Model

  • Conference paper
Pattern Recognition (CCPR 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 321))

Included in the following conference series:

Abstract

It has been generally accepted that the retina is the first level that plays critical role in the function of color constancy in human visual system. In this paper we propose a computational model which imitates the neural mechanisms of color information processing in retina. In this model we first compute a simple statistics of reflectance about the real scene by simulating bipolar cells. Then, the ganglion cells (e.g., the midget cells) receive both the computational statistics of reflectance of the scene from bipolar cells and the response from horizontal cells as well as amacrine cells. Subsequently, the ganglion cells provide a stable output independent of the color of illuminant. We tested our model on a commonly used large-scale linear image dataset, and the results demonstrate that our model provides better color constancy performance than those widely accepted color constancy models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conway, B.R., Livingstone, M.S.: A different point of hue. Proceedings of the National Academy of Sciences of the United States of America 102(31), 10761 (2005)

    Article  Google Scholar 

  2. Gegenfurtner, K.R.: Cortical mechanisms of colour vision. Nature Reviews Neuroscience 4(7), 563–572 (2003)

    Article  Google Scholar 

  3. Conway, B.R., Chatterjee, S., Field, G.D., Horwitz, G.D., Johnson, E.N., Koida, K., Mancuso, K.: Advances in color science: from retina to behavior. The Journal of Neuroscience 30(45), 14955–14963 (2010)

    Article  Google Scholar 

  4. Schein, S., Desimone, R.: Spectral properties of V4 neurons in the macaque. The Journal of Neuroscience 10(10), 3369–3389 (1990)

    Google Scholar 

  5. Kolb, H.: How the retina works. American Scientist 91(1), 28–35 (2003)

    Google Scholar 

  6. Land, E.H., McCann, J.J.: Lightness and retinex theory. Journal of the Optical society of America 61(1), 1–11 (1971)

    Article  Google Scholar 

  7. Spitzer, H., Semo, S.: Color constancy: a biological model and its application for still and video images. Pattern Recognition 35(8), 1645–1659 (2002)

    Article  MATH  Google Scholar 

  8. Huang, C.H., Lin, C.T.: Bio-inspired computer fovea model based on hexagonal-type cellular neural network. IEEE Transactions on Circuits and Systems I: Regular Papers 54(1), 35–47 (2007)

    Article  MathSciNet  Google Scholar 

  9. Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1), 1–26 (1980)

    Article  MathSciNet  Google Scholar 

  10. Finlayson, G., Hordley, S., Tastl, I.: Gamut constrained illuminant estimation. International Journal of Computer Vision 67(1), 93–109 (2006)

    Article  Google Scholar 

  11. Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)

    Article  MathSciNet  Google Scholar 

  12. Barnard, K., Adviser-Funt, B.: Practical colour constancy. Simon Fraser University (1999)

    Google Scholar 

  13. Von Kries, J.: Influence of adaptation on the effects produced by luminous stimuli, pp. 109–119. MIT Press (1970)

    Google Scholar 

  14. Hordley, S.D., Finlayson, G.D.: Reevaluation of color constancy algorithm performance. JOSA A 23(5), 1008–1020 (2006)

    Article  Google Scholar 

  15. Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited, pp. 1–8. IEEE (2008)

    Google Scholar 

  16. Funt., L.S.a.B.V.: Re-processed version of the Gehler color constancy database of 568 images, http://www.cs.sfu.ca/~colour/data/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, S., Li, Y. (2012). A Retinal Mechanism Based Color Constancy Model. In: Liu, CL., Zhang, C., Wang, L. (eds) Pattern Recognition. CCPR 2012. Communications in Computer and Information Science, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33506-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33506-8_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33505-1

  • Online ISBN: 978-3-642-33506-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics