Skip to main content

Ab Initio Modelling of Steady Rotating Stars

  • Chapter
Studying Stellar Rotation and Convection

Part of the book series: Lecture Notes in Physics ((LNP,volume 865))

Abstract

Modelling isolated rotating stars at any rotation rate is a challenge for the next generation of stellar models. These models will couple dynamical aspects of rotating stars, like angular momentum and chemicals transport, with classical chemical evolution, gravitational contraction or mass-loss. Such modelling needs to be achieved in two dimensions, combining the calculation of the structure of the star, its mean flows and the time-evolution of the whole. We present here a first step in this challenging programme. It leads to the first self-consistent two-dimensional models of rotating stars in a steady state generated by the ESTER code. In these models the structure (pressure, density and temperature) and the flow fields are computed in a self-consistent way allowing the prediction of the differential rotation and the associated meridian circulation of the stars. After a presentation of the physical properties of such models and the numerical methods at work, we give the first grid of such models describing massive and intermediate-mass stars for a selection of rotation rates up to 90 % of the breakup angular velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodenheimer, P.: Rapidly rotating stars. VII. Effects of angular momentum on upper-main models. Astrophys. J. 167, 153 (1971)

    Article  ADS  Google Scholar 

  2. Bodenheimer, P., Ostriker, J.P.: Rapidly rotating stars. VI. Pre-main—evolution of massive stars. Astrophys. J. 161, 1101 (1970)

    Article  ADS  Google Scholar 

  3. Bodenheimer, P., Ostriker, J.P.: Rapidly rotating stars. VIII. Zero-viscosity polytropic sequences. Astrophys. J. 180, 159–170 (1973)

    Article  ADS  Google Scholar 

  4. Bonazzola, S., Gourgoulhon, E., Marck, J.A.: Numerical approach for high precision 3D relativistic star models. Phys. Rev. D 58, 104020 (1998)

    Article  ADS  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Charbonnel, C., Talon, S.: The hot side of the lithium dip—LiBeB abundances beyond the main sequence. Astron. Astrophys. 351, 635–643 (1999)

    ADS  Google Scholar 

  7. Clement, M.J.: On the solution of Poisson’s equation for rapidly rotating stars. Astrophys. J. 194, 709–714 (1974)

    Article  ADS  Google Scholar 

  8. Deupree, R.G.: Structure of uniformly rotating stars. Astrophys. J. 735, 69 (2011)

    Article  ADS  Google Scholar 

  9. Dintrans, B., Rieutord, M.: Oscillations of a rotating star: a non-perturbative theory. Astron. Astrophys. 354, 86–98 (2000)

    ADS  Google Scholar 

  10. Domiciano de Souza, A., Kervella, P., Jankov, S., Vakili, F., Ohishi, N., Nordgren, T.E., Abe, L.: Gravitational-darkening of Altair from interferometry. Astron. Astrophys. 442, 567–578 (2005)

    Article  ADS  Google Scholar 

  11. Eriguchi, Y.: Hydrostatic equilibria of rotating polytropes. Publ. Astron. Soc. Jpn. 30, 507–518 (1978)

    ADS  Google Scholar 

  12. Eriguchi, Y., Müller, E.: A general computational method for obtaining equilibria of self-gravitating and rotating gases. Astron. Astrophys. 146, 260–268 (1985)

    ADS  MATH  Google Scholar 

  13. Eriguchi, Y., Müller, E.: Structure of rapidly rotating axisymmetric stars. I—A numerical method for stellar structure and meridional circulation. Astron. Astrophys. 248, 435–447 (1991)

    ADS  Google Scholar 

  14. Eriguchi, Y., Sugimoto, D.: Another equilibrium sequence of self-gravitating and rotating incompressible fluid. Prog. Theor. Phys. 65, 1870–1875 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Espinosa Lara, F., Rieutord, M.: The dynamics of a fully radiative rapidly rotating star enclosed within a spherical box. Astron. Astrophys. 470, 1013–1022 (2007)

    Article  ADS  MATH  Google Scholar 

  16. Espinosa Lara, F., Rieutord, M.: Gravity darkening in rotating stars. Astron. Astrophys. 533, A43 (2011)

    Article  ADS  Google Scholar 

  17. Espinosa Lara, F., Rieutord, M.: Self-consistent 2D models of fast rotating stars with radiative envelopes. Astron. Astrophys. (2012, submitted)

    Google Scholar 

  18. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Frischknecht, U., Hirschi, R., Thielemann, F.K.: Non-standard s-process in low metallicity massive rotating stars. Astron. Astrophys. 538, L2 (2012)

    Article  ADS  Google Scholar 

  20. Grandclément, P.: Introduction to spectral methods. In: Rieutord, M., Dubrulle, B. (eds.) Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, pp. 153–180. EDP Sciences (2006)

    Google Scholar 

  21. Grevesse, N., Noels, A.: The solar composition. In: Prantzos, N., Vangioni-Flam, E., Cassé, M. (eds.) Origin and Evolution of the Elements, pp. 15–25. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  22. Jackson, S.: Rapidly rotating stars. V. The coupling of the Henyey and the self-consistent methods. Astrophys. J. 161, 579 (1970)

    Article  ADS  Google Scholar 

  23. Jackson, S., MacGregor, K.B., Skumanich, A.: Models for the rapidly rotating Be star Achernar. Astrophys. J. 606, 1196–1199 (2004)

    Article  ADS  Google Scholar 

  24. Jackson, S., MacGregor, K.B., Skumanich, A.: On the use of the self-consistent-field method in the construction of models for rapidly rotating main-sequence stars. Astrophys. J. Suppl. Ser. 156, 245–264 (2005)

    Article  ADS  Google Scholar 

  25. James, R.A.: The structure and stability of rotating gas masses. Astrophys. J. 140, 552 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  26. Lovekin, C.C., Deupree, R.G., Short, C.I.: Surface temperature and synthetic spectral energy distributions for rotationally deformed stars. Astrophys. J. 643, 460–470 (2006)

    Article  ADS  Google Scholar 

  27. Maeder, A., Meynet, G.: Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron. Astrophys. 373, 555–571 (2001)

    Article  ADS  Google Scholar 

  28. Mark, J.W.K.: Rapidly rotating stars. III. Massive main-sequence stars. Astrophys. J. 154, 627 (1968)

    Article  ADS  Google Scholar 

  29. Metzger, B.D., Giannios, D., Thompson, T.A., Bucciantini, N., Quataert, E.: The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413, 2031–2056 (2011)

    Article  ADS  Google Scholar 

  30. Meynet, G., Maeder, A.: Stellar evolution with rotation. XI. Wolf–Rayet star populations at different metallicities. Astron. Astrophys. 429, 581–598 (2005)

    Article  ADS  Google Scholar 

  31. Ostriker, J.P., Bodenheimer, P.: Rapidly rotating stars. II. Massive white dwarfs. Astrophys. J. 151, 1089 (1968)

    Article  ADS  Google Scholar 

  32. Ostriker, J.P., Hartwick, F.D.A.: Rapidly rotating stars. IV. Magnetic white dwarfs. Astrophys. J. 153, 797 (1968)

    Article  ADS  Google Scholar 

  33. Ostriker, J.P., Mark, J.W.K.: Rapidly rotating stars. I. The self-consistent-field method. Astrophys. J. 151, 1075–1088 (1968)

    Article  ADS  Google Scholar 

  34. Reese, D.R., MacGregor, K.B., Jackson, S., Skumanich, A., Metcalfe, T.S.: Pulsation modes in rapidly rotating stellar models based on the self-consistent field method. Astron. Astrophys. 506, 189–201 (2009)

    Article  ADS  Google Scholar 

  35. Reese, D.R., Thompson, M.J., MacGregor, K.B., Jackson, S., Skumanich, A., Metcalfe, T.S.: Mode identification in rapidly rotating stars. Astron. Astrophys. 506, 183–188 (2009)

    Article  ADS  Google Scholar 

  36. Rieutord, M.: The dynamics of the radiative envelope of rapidly rotating stars. I. A spherical Boussinesq model. Astron. Astrophys. 451, 1025–1036 (2006)

    Article  ADS  MATH  Google Scholar 

  37. Rieutord, M.: Modeling rapidly rotating stars. In: Casoli, F., et al. (eds.) SF2A Proceedings 2006 (2006). arXiv:astro-ph/0702384

    Google Scholar 

  38. Rieutord, M., Espinosa Lara, F.: On the dynamics of a radiative rapidly rotating star. Commun. Asteroseismol. 158, 99–103 (2009)

    ADS  Google Scholar 

  39. Roxburgh, I.W.: 2-dimensional models of rapidly rotating stars I. Uniformly rotating zero age main sequence stars. Astron. Astrophys. 428, 171–179 (2004)

    Article  ADS  MATH  Google Scholar 

  40. Shindo, M., Hashimoto, M., Eriguchi, Y., Mueller, E.: Rapidly rotating stars with either H burning or He burning core. Astron. Astrophys. 326, 177–186 (1997)

    ADS  Google Scholar 

  41. Uryu, K., Eriguchi, Y.: Structures of rapidly rotating baroclinic stars—I. A numerical method for the angular velocity distribution. Mon. Not. R. Astron. Soc. 269, 24 (1994)

    ADS  Google Scholar 

  42. Uryu, K., Eriguchi, Y.: Structures of rapidly rotating baroclinic stars—II. An extended numerical method for realistic stellar models. Mon. Not. R. Astron. Soc. 277, 1411–1429 (1995)

    ADS  Google Scholar 

  43. Zahn, J.P.: Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115 (1992)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under grant ESTER (ANR-09-BLAN-0140). This work was also supported by the Centre National de la Recherche Scientifique (CNRS, UMR 5277), through the Programme National de Physique Stellaire (PNPS). The numerical calculations were carried out on the CalMip machine of the “Centre Interuniversitaire de Calcul de Toulouse” (CICT), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rieutord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rieutord, M., Espinosa Lara, F. (2013). Ab Initio Modelling of Steady Rotating Stars. In: Goupil, M., Belkacem, K., Neiner, C., Lignières, F., Green, J. (eds) Studying Stellar Rotation and Convection. Lecture Notes in Physics, vol 865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33380-4_3

Download citation

Publish with us

Policies and ethics