Skip to main content

Follow-the-Leader Cellular Automata Based Model Directing Crowd Movement

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

This paper describes a model that simulates crowd movement incorporating an efficient follow-the-leader technique based on cellular automata (CA). The scope of the method is to derive principal characteristics of collective motion of biological organisms, such as flocks, swarms or herds and to apply them to the simulation of crowd movement. Thus, the study focuses on the massive form of the movement of individuals, which is lastingly detected macroscopically, during urgent circumstances with the help of some form of guidance. Nevertheless, on a lower level, this formation derives from the application of simple local rules that are applied individually to every single member of the group. Hence, the adoption of CA-based formation has allowed the development of a micro-operating model with macro-features. Furthermore, the model takes advantage of the inherent ability of CA to represent sufficiently phenomena of arbitrary complexity. The response of the model has been evaluated through different simulation scenes that have been developed both in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burks, A.W.: Theory of Self-Reproducing Automata JOHN VON NEUMANN. University of Illinois Press, Urbana and London (1966)

    Google Scholar 

  2. Smith, J.A.: Martin A.M., Comparison of Hard-Core and Soft-Core Potentials for Modelling Flocking in Free Space, University of Melbourne, Parkville, arXiv:0905.2260v1 (2009)

    Google Scholar 

  3. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Computer Graphics, Los Angeles (1987)

    Google Scholar 

  4. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 75, 1226 (1995)

    Article  Google Scholar 

  5. Lawson, D.: Planes: Trains and Ant Hills: Computer scientists simulate activity of ants to reduce airline delays. Science Daily, April 1 (2008)

    Google Scholar 

  6. Swarming the shelves: How groups can exploit people’s herd mentality to increase sales. The Economist, 90 (November 11, 2006)

    Google Scholar 

  7. Fisher, L.: The perfect swarm: the science of complexity in everyday life. Basic Books, New York (2009)

    Google Scholar 

  8. Qingge, J.I., Can, G.A.O.: Simulating Crowd Evacuation with a Leader-Follower Model. IJCSES International Journal of Computer Sciences and Engineering Systems 1(4) (October 2007)

    Google Scholar 

  9. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  10. Bandini, S., Federici, M.L., Vizzari, G.: Situated Cellular Agents Approach to Crowd Modeling and Simulation. Cybernetics and Systems 38, 729–753 (2007)

    Article  MATH  Google Scholar 

  11. Bandini, S., Manzoni, S., Redaelli, S.: Towards an Ontology for Crowds Description: A Proposal Based on Description Logic. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 538–541. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  13. Goldstone, R.L., Janssen, M.A.: Computational models of collective behavior. Trends in Cognitive Sciences 9(9), 424–430 (2005)

    Article  Google Scholar 

  14. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proc. of the National Academy of Sciences of the USA (PNAS) 99(suppl.3), 7280–7287 (2002)

    Article  Google Scholar 

  15. Lo, S.M., Huang, H.C., Wang, P., Yuen, K.K.: A game theory based exit selection model for evacuation. Fire Safety Journal 41, 364–369 (2006)

    Article  Google Scholar 

  16. Altshuler, E., Ramos, O., Nunez, Y., Fernandez, J., Batista-Leyva, A.J., Noda, C.: Symmetry breaking in escaping ants. The American Naturalist 166(6), 643–649 (2005)

    Article  Google Scholar 

  17. Aubé, F., Shield, R.: Modeling the Effect of Leadership on Crowd Flow Dynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 601–611. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Yuan, W.F., Tan, K.H.: An evacuation model using cellular automata. Physica A 384, 549–566 (2007)

    Article  Google Scholar 

  19. Varas, A., Cornejo, M.D., Mainemer, D., Toledo, B., Rogan, J., Munoz, V., et al.: Cellular automaton model for evacuation process with obstacles. Physica A 382, 631–642 (2007)

    Article  Google Scholar 

  20. Li, J., Yang, L.Z., Zhao, D.L.: Simulation of bi-direction pedestrian movement in corridor. Physica A 354, 619–628 (2005)

    Article  Google Scholar 

  21. Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A 324, 689–697 (2003)

    Article  MATH  Google Scholar 

  22. Georgoudas, I.G., Sirakoulis, G.C., Andreadis, I.: A Simulation Tool for Modelling Pedestrian Dynamics during Evacuation of Large Areas. In: The Proceedings of the 3rd IFIP Conference on Artificial Intelligence Applications, & Innovations (AIAI 2006), Athens, Greece, June 7-9. IFIP, vol. 204, pp. 618–626 (2006)

    Google Scholar 

  23. Touma, J., Shreim, A., Klushin, L.I.: Self-Organisation in two-dimensional Swarms. Physical Review E 81, 066106 (2010), arXiv:1103.2551v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vihas, C., Georgoudas, I.G., Sirakoulis, G.C. (2012). Follow-the-Leader Cellular Automata Based Model Directing Crowd Movement. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics