Skip to main content

Two Dimensional Range Minimum Queries and Fibonacci Lattices

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

Given a matrix of size N, two dimensional range minimum queries (2D-RMQs) ask for the position of the minimum element in a rectangular range within the matrix. We study trade-offs between the query time and the additional space used by indexing data structures that support 2D-RMQs. Using a novel technique—the discrepancy properties of Fibonacci lattices—we give an indexing data structure for 2D-RMQs that uses O(N/c) bits additional space with O(clogc(loglogc)2) query time, for any parameter c, 4 ≤ c ≤ N. Also, when the entries of the input matrix are from {0,1}, we show that the query time can be improved to O(clogc) with the same space usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Fischer, J., Lewenstein, M.: Two-Dimensional Range Minimum Queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multidimensional arrays. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 150–160. SIAM (2010)

    Google Scholar 

  3. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct Orthogonal Range Search Structures on a Grid with Applications to Text Indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays. In: Proc. 5th Annual Symposium on Computational Geometry, pp. 131–139. ACM (1989)

    Google Scholar 

  6. Chor, B., Leiserson, C.E., Rivest, R.L., Shearer, J.B.: An application of number theory to the organization of raster-graphics memory. Journal of ACM 33(1), 86–104 (1986)

    Article  MathSciNet  Google Scholar 

  7. Davoodi, P., Raman, R., Rao, S.S.: Succinct representations of binary trees for range minimum queries. In: Proc. 18th Annual International Conference on Computing and Combinatorics (to appear, 2012)

    Google Scholar 

  8. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian Trees and Range Minimum Queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Farzan, A., Munro, J.I., Raman, R.: Succinct Indices for Range Queries with Applications to Orthogonal Range Maxima. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 327–338. Springer, Heidelberg (2012)

    Google Scholar 

  10. Fiat, A., Shamir, A.: Polymorphic arrays: A novel VLSI layout for systolic computers. Journal of Computer and System Sciences 33(1), 47–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiat, A., Shamir, A.: How to find a battleship. Networks 19, 361–371 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM (1984)

    Google Scholar 

  14. Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range Maximum Queries. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Matousek, J.: Geometric Discrepancy. Algorithms and Combinatorics. Springer (1999)

    Google Scholar 

  16. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal of Discrete Algorithms 5(1), 12–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23(4), 229–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S. (2012). Two Dimensional Range Minimum Queries and Fibonacci Lattices. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics