Skip to main content

A Simple Controller for Line Following of Sailboats

  • Conference paper
Robotic Sailing 2012

Abstract

This paper proposes a simple controller for sailboat robots. The resulting controller is simple to implement and its parameters are easy to tune. Its complexity is low enough to be applicable for sailing robots with very limited computation power. The presentation contains all the necessary details to allow a fast and reliable implementation of a sailboat robot controller which follows a line. The paper also presents a simple collision avoidance strategy based on interval analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Bars, F., Jaulin, L.: An Experimental Validation of a Robust Controller with the VAIMOS Autonomous Sailboat. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 73–84. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Brière, Y.: The first microtransat challenge. ENSICA (2006), http://web.ensica.fr/microtransat

  3. Bruder, R., Stender, B., Schlaefer, A.: Model sailboats as a testbed for artificial intelligence methods. In: International Robotic Sailing Conference, Matosinhos, Portugal (2009)

    Google Scholar 

  4. Cruz, N.A., Alves, J.C.: Ocean sampling and surveillance using autonomous sailboats. In: International Robotic Sailing Conference, Austria (2008)

    Google Scholar 

  5. Drevelle, V., Bonnifait, P.: High integrity gnss location zone characterization using interval analysis. In: ION GNSS (2009)

    Google Scholar 

  6. Gale, T.J., Walls, J.T.: Development of a sailing dinghy simulator. Simulation 74(3), 167–179 (2000)

    Article  MATH  Google Scholar 

  7. Guillou, G.: Architecture multi-agents pour le pilotage automatique des voiliers de compétition et extensions algébriques des réseaux de Petri. PhD dissertation, Université de Bretagne, Brest, France (2011)

    Google Scholar 

  8. Herrero, P., Jaulin, L., Vehi, J., Sainz, M.A.: Guaranteed set-point computation with application to the control of a sailboat. International Journal of Control Automation and Systems 8(1), 1–7 (2010)

    Article  Google Scholar 

  9. http://youtu.be/pHteidmZpnY

  10. Jaulin, L.: A Nonlinear Set-membership Approach for the Localization and Map Building of an Underwater Robot using Interval Constraint Propagation. IEEE Transaction on Robotics 25(1), 88–98 (2009)

    Article  MathSciNet  Google Scholar 

  11. Jaulin, L., Le Bars, F.: An interval approach for stability analysis; Application to sailboat robotics. Submitted to IEEE Transaction on Robotics (2012)

    Google Scholar 

  12. Jaulin, L., Le Bars, F., Clément, B., Gallou, Y., Ménage, O., Reynet, O., Sliwka, J., Zerr, B.: Suivi de route pour un robot voilier. In: CIFA 2012, Grenoble, France (2012)

    Google Scholar 

  13. Kearfott, R.B., Kreinovich, V. (eds.): Applications of Interval Computations. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  14. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall (2002)

    Google Scholar 

  15. LeBars, F., Sliwka, J., Reynet, O., Jaulin, L.: State estimation with fleeting data. Automatica 48(2), 381–387 (2012)

    Article  MathSciNet  Google Scholar 

  16. Lucidarme, P., Hardouin, L., Paillat, J.L.: Variable geometry tracked vehicle (vgtv) prototype: conception, capability and problems. In: Humans Operating Unmanned Systems (HUMOUS) Conference, France - Brest, pp. 115–126 (2008)

    Google Scholar 

  17. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  18. Petres, C., Ramirez, M.R., Plumet, F.: Reactive path planning for autonomous sailboat. In: IEEE International Conference on Advanced Robotics, pp. 1–6 (2011)

    Google Scholar 

  19. Ramdani, N., Poignet, P.: Robust dynamic experimental identification of robots with set membership uncertainty. IEEE/ASME Transactions on Mechatronics 10(2), 253–256 (2005)

    Article  Google Scholar 

  20. Sauze, C., Neal, M.: An autonomous sailing robot for ocean observation. In: Proceedings of TAROS 2006, Guildford, UK, pp. 190–197 (2006)

    Google Scholar 

  21. Tucker, W.: The Lorenz attractor exists. Comptes Rendus de l’académie des Sciences 328(12), 1197–1202 (1999)

    MATH  Google Scholar 

  22. Xiao, K., Sliwka, J., Jaulin, L.: A wind-independent control strategy for autonomous sailboats based on voronoi diagram. In: CLAWAR 2011, Paris (2011) (best paper award)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaulin, L., Le Bars, F. (2013). A Simple Controller for Line Following of Sailboats. In: Sauzé, C., Finnis, J. (eds) Robotic Sailing 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33084-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33084-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33083-4

  • Online ISBN: 978-3-642-33084-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics