Skip to main content

Root-Refining for a Polynomial Equation

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7442))

Included in the following conference series:

Abstract

Polynomial root-finding usually consists of two stages. At first a crude approximation to a root is slowly computed; then it is much faster refined by means of the same or distinct iterations. The efficiency of computing an initial approximation resists formal study, and the users employ empirical data. In contrast, the efficiency of refinement is formally measured by the classical concept q 1/α where q is the convergence order and α is the number of function evaluations per iteration. To cover iterations not reduced to function evaluations alone, e.g., ones simultaneously refining n approximations to all n roots of a degree n polynomial, we let d denote the number of arithmetic operations involved in an iteration divided by 2n because we can evaluate such a polynomial at a point by using 2n operations. For this task we employ recursive polynomial factorization to yield refinement with the efficiency \(2^{cn/\log^2 n}\) for a positive constant c. For large n this is a dramatic increase versus the record efficiency 2 of refining an approximation to a single root of a polynomial. The advance could motivate practical use of the proposed root-refiners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberth, O.: Iteration Methods For Finding All Zeros of a Polynomial Simultaneously. Mathematics of Computation 27(122), 339–344 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aitken, A.C.: On Bernoulli’s numerical solution of algebraic equations. Proc. Roy. Soc. Edin. 46, 289–305 (1926)

    MATH  Google Scholar 

  3. Barnett, S.: Polynomial and Linear Control Systems. Marcel Dekker, NY (1983)

    Google Scholar 

  4. Bell, E.T.: The Development of Mathematics. McGraw-Hill, New York (1940)

    Google Scholar 

  5. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, Fundamental Algorithms, vol. 1. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  6. Bollobàs, B., Lackmann, M., Schleicher, D.: A small probabilistic universal set of starting points for finding roots of complex polynomials by Newton’s method. Math. of Computation (in press, 2012), arXiv:1009.1843

    Google Scholar 

  7. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)

    Google Scholar 

  8. Boyer, C.A.: A History of Mathematics. Wiley, New York (1968)

    MATH  Google Scholar 

  9. Curry, J.H.: On zero finding methods of higher order from data at one point. J. of Complexity 5, 219–237 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durand, E.: Equations du type F(x) = 0: Racines d’un polynome, In Solutions numérique équation algébrique, Masson, Paris, vol. 1 (1960)

    Google Scholar 

  11. Demeure, C.J., Mullis, C.T.: A Newton–Raphson method for moving-average spectral factorization using the Euclid algorithm. IEEE Trans. Acoust., Speech, Signal Processing 38, 1697–1709 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrlich, L.W.: A modified Newton method for polynomials. Comm. of ACM 10, 107–108 (1967)

    Article  MATH  Google Scholar 

  13. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proc. ISSAC 2002, pp. 75–83. ACM Press, NY (2002)

    Google Scholar 

  14. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. American Mathematical Monthly 66, 464–466 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press (1982)

    Google Scholar 

  16. Kerner, I.O.: Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen. Numerische Mathematik 8, 290–294 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, M.-H.: Computational complexity of the Euler type algorithms for the roots of complex polynomials. PhD Thesis, City University of New York (1985)

    Google Scholar 

  18. Kirrinnis, P.: Polynomial factorization and partial fraction decomposition by simultaneous Newton’s iteration. J. of Complexity 14, 378–444 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahler, K.: An Inequality for the Discriminant of a Polynomial. Michigan Math. Journal 11, 257–262 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. McNamee, J.M.: A 2002 update of the supplementary bibliography on root of polynomials. J. Comput. Appl. Math. 142, 433–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. McNamee, J.M.: Numerical Methods for Roots of Polynomials (Part 1). Elsevier, Amsterdam (2007)

    Google Scholar 

  22. McNamee, J.M., Pan, V.Y.: Efficient polynomial root-refiners: survey and new record estimates. Computers and Math. with Applics. 63, 239–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mourrain, B., Pan, V.Y.: Multivariate polynomials, duality and structured matrices. J. of Complexity 16(1), 110–180 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Muller, D.E.: A method for solving algebraic equations using an automatic computer. Math. Tables Aids Comput. 10, 208–215 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Neff, C.A., Reif, J.H.: An o(n 1 + ε) algorithm for the complex root problem. In: Proc. STOC 1994, pp. 540–547. IEEE Computer Society Press (1994)

    Google Scholar 

  26. Ostrowski, A.M.: Recherches sur la méthode de Graeffe et les zéros des polynomes et des sèries de Laurent. Acta Math 72, 99–257 (1940)

    Article  MathSciNet  Google Scholar 

  27. Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York (1966)

    MATH  Google Scholar 

  28. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp. on Theory of Computing, pp. 741–750. ACM Press, New York (1995)

    Google Scholar 

  29. Pan, V.Y.: Optimal and nearly optimal algorithms for approximating polynomial zeros. Computers and Math. with Applications 31(12), 97–138 (1996)

    Article  MATH  Google Scholar 

  30. Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Review 39(2), 187–220 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pan, V.Y.: Solving polynomials with computers. American Scientist 86 ( January-February 1998)

    Google Scholar 

  32. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. J. Symbolic Computation 33(5), 701–733 (2002)

    Article  MATH  Google Scholar 

  33. Pan, V.Y.: Amended DSeSC Power Method for polynomial root-finding. Computers and Math (with Applications) 49(9-10), 1515–1524 (2005)

    Article  MATH  Google Scholar 

  34. Pan, V.Y., Zheng, A.–L.: New progress in real and complex polynomial root-finding. Computers and Mathematics with Applications 61, 1305–1334 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pan, V.Y., Zheng, A.–L.: Root-finding by expansion with independent constraints. Computers and Mathematics with Applications 62, 3164–3182 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  36. Petkovic, M.S., Herceg, D.: Point estimation of simultaneous methods for solving polynomial equations: a survey. Computers Math. with Applics. 136, 183–207 (2001)

    MathSciNet  Google Scholar 

  37. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of polynomials. J. of Complexity 3, 90–113 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Department of Math., University of Tübingen, Germany (1982)

    Google Scholar 

  39. Smale, S.: The fundamental theorem of algebra and complexity theory. Bulletin of the American Mathematical Society 4, 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Cross, K.I., Martin, C.F. (eds.) The Merging Disciplines: New Directions in Pure, Applied and Computational Math., pp. 185–196. Springer (1986)

    Google Scholar 

  41. Van Dooren, P.M.: Some numerical challenges in control theory. Linear Algebra for Control Theory IMA Vol. Math. Appl (1994)

    Google Scholar 

  42. Weierstrass, K.: Neuer Beweis des Fundamentalsatzes der Algebra. Mathematische Werke, Band III, Mayer und Müller, Berlin, 251–269 (1903)

    Google Scholar 

  43. Wilson, G.T.: Factorization of the covariance generating function of a pure moving-average process. SIAM J. on Numerical Analysis 6, 1–7 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, V.Y. (2012). Root-Refining for a Polynomial Equation. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics