Skip to main content

A Hybrid Approach to Piecewise Modelling of Biochemical Systems

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

Abstract

Modelling biochemical systems has received considerable attention over the last decade from scientists and engineers across a number of fields, including biochemistry, computer science, and mathematics. Due to the complexity of biochemical systems, it is natural to construct models of the biochemical systems incrementally in a piecewise manner. This paper proposes a hybrid approach which applies an evolutionary algorithm to select and compose pre-defined building blocks from a library of atomic models, mutating their products, thus generating complex systems in terms of topology, and employs a global optimization algorithm to fit the kinetic rates. Experiments using two signalling pathways show that given target behaviours it is feasible to explore the model space by this hybrid approach, generating a set of synthetic models with alternative structures and similar behaviours to the desired ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anily, S., Federgruen, A.: Simulated annealing methods with general acceptance probabilities. J. Appl. Prob. 24(3), 657–667 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsa-Canto, E., Banga, J.R., Egea, J.A., Fernandez-Villaverde, A., de Hijas-Liste, G.M.: Global optimization in systems biology: stochastic methods and their applications. In: Goryanin, I.I., Goryachev, A.B. (eds.) Advances in Systems Biology, Adv. Exp. Med. Biol., vol. 736, pp. 409–424 (2012)

    Google Scholar 

  3. Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform. 9(5), 404–422 (2008)

    Article  Google Scholar 

  4. Brightman, F.A., Fell, D.A.: Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Letters 482(3), 169–174 (2000)

    Article  Google Scholar 

  5. Cao, H., Romero-Campero, F., Heeb, S., Camara, M., Krasnogor, N.: Evolving cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)

    Article  Google Scholar 

  6. Cho, K.H., Shin, S.Y., Kim, H.W., Wolkenhauer, O., Mcferran, B., Kolch, W.: Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Feng, X.J., Hooshangi, S., Chen, D., Li, G., Weiss, R., Rabitz, H.: Optimizing genetic circuits by global sensitivity analysis. Biophys 87(4), 2195–2202 (2004)

    Article  Google Scholar 

  8. Francois, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. PNAS 101(2), 580–585 (2004)

    Article  Google Scholar 

  9. Gilbert, D., Breitling, R., Heiner, M., Donaldson, R.: An Introduction to BioModel Engineering, Illustrated for Signal Transduction Pathways. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 13–28. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Kitagawa, J., Iba, H.: Identifying metabolic pathways and gene regulation networks with evolutionary algorithms. In: Fogel, G.B., Corne, D.W. (eds.) Evolutionary Computation in Bioinformatics, pp. 255–278 (2003)

    Google Scholar 

  11. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. of the National Academy of Sciences of the United States of America 97(11), 5818–5823 (2000)

    Article  Google Scholar 

  12. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588 (2000)

    Article  Google Scholar 

  13. Manca, V., Marchetti, L.: Log-Gain stoichiometric stepwise regression for MP systems. J. Found. Comput. Sci. 22(1), 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maria, G.: A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chem. Biochem. Eng. Q. 18(3), 195–222 (2004)

    Google Scholar 

  15. Murata, T.: Petri Nets: properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  16. Rodrigo, G., Carrera, J., Jaramillo, A.: Genetdes: automatic design of transcriptional networks. Bioinformatics 23(14), 1857–1858 (2007)

    Article  Google Scholar 

  17. Schulz, M., Bakker, B.M., Klipp, E.: TIde: a software for the systematic scanning of drug targets in kinetic network models. BMC Bioinformatics 10(1), 344–353 (2009)

    Article  Google Scholar 

  18. Sendin, J.O.H., Exler, O., Banga, J.R.: Multi-objective mixed integer strategy for the optimisation of biological networks. Systems Biology, IET 4(3), 236–248 (2010)

    Article  Google Scholar 

  19. Sun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biol. Bioinformatics 9(1), 185–202 (2012)

    Article  Google Scholar 

  20. Vyshemirsky, V., Girolami, M.: Bayesian ranking of biochemical system models. BMC Bioinformatics 24(6), 833–839 (2008)

    Google Scholar 

  21. Wu, Z., Gao, Q., Gilbert, D.: Target driven biochemical network reconstruction based on petri nets and simulated annealing. In: Quaglia, P. (ed.) CMSB 2010, pp. 33–42. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Z., Yang, S., Gilbert, D. (2012). A Hybrid Approach to Piecewise Modelling of Biochemical Systems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics