Skip to main content

Lower Bounds on the Complexity of the Wavelength-Based Machine

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7445))

Abstract

The optical wavelength-based machine, or simply w-machine, is a computational model designed based on physical properties of light. The machine deals with sets of binary numbers, and performs computation using four defined basic operations. The sets are implemented as light rays and wavelengths are considered as binary numbers. Basic operations are then implemented using simple optical devices.

In this paper, we have provided a polynomial lower bound on the complexity of any w-machine computing all satisfiable SAT formulas. We have shown that the provided lower bound is tight by providing such a w-machine. Although the size complexity of the SAT problem on w-machine is polynomial, but, according to the provided optical implementation, it requires exponential amount of energy to be computed.

We have also provided an exponential lower bound on the complexity of most of w-machine languages, by showing that when n tends to infinity, the ratio of n-bit languages requiring exponential size w-machine to be computed, to the number of all n-bit languages, converges to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meinders, E.R., Mijiritskii, A.V., van Pieterson, L., Wuttig, M.: Optical Data Storage: Phase-change media and recording, 1st edn. Springer (2006)

    Google Scholar 

  2. Maier, M.: Optical Switching Networks, 1st edn. Cambridge University Press (2008)

    Google Scholar 

  3. Gupta, S.: Optoelectronic Devices and Systems, vol. 1. Prentice-Hall of India Pvt. Ltd. (2005)

    Google Scholar 

  4. Dolev, S., Fitoussi, H.: Masking traveling beams:optical solutions for np-complete problems, trading space for time. Theor. Comput. Sci. 411, 837–853 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goliaei, S., Jalili, S.: An optical solution to the 3-sat problem using wavelength based selectors. J. Supercomput. (in press)

    Google Scholar 

  6. Goliaei, S., Jalili, S.: Optical Graph 3-Colorability. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 16–22. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Goliaei, S., Jalili, S.: An Optical Wavelength-Based Solution to the 3-SAT Problem. In: Dolev, S., Oltean, M. (eds.) OSC 2009. LNCS, vol. 5882, pp. 77–85. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Oltean, M., Muntean, O.: An Optical Solution for the SAT Problem. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 53–62. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Haist, T., Osten, W.: An optical solution for the traveling salesman problem. Optics Express 15(16), 10473–10482 (2007)

    Article  Google Scholar 

  10. Woods, D., Gibson, J.: Lower bounds on the computational power of an optical model of computation. Nat. Comput. 7(1), 95–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Woods, D., Naughton, T.J.: An optical model of computation. Theor. Comput. Sci. 334(1-3), 227–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Černý, V.: Quantum computers and intractable (NP-complete) computing problems. Phys. Rev. A 48(1), 116–119 (1993)

    Article  Google Scholar 

  13. Greenwood, G.W.: Finding solutions to np problems: Philosophical differences between quantum and evolutionary search. In: Proc. 2001 Congress Evolutionary Computation, Seoul, Korea, pp. 815–822 (2001)

    Google Scholar 

  14. Shannon, C.: The synthesis of two-terminal switching circuits. Bell Sys. Tech. J. 28(1), 59–98 (1949)

    MathSciNet  Google Scholar 

  15. Muller, D.E.: Complexity in electronic switching circuits. IRE Trans. Electron. Comput. EC-5(1), 15–19 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goliaei, S., Foroughmand-Araabi, MH. (2012). Lower Bounds on the Complexity of the Wavelength-Based Machine. In: Durand-Lose, J., Jonoska, N. (eds) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol 7445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32894-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32893-0

  • Online ISBN: 978-3-642-32894-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics