Skip to main content

Random Forest for Gene Selection and Microarray Data Classification

  • Conference paper
Knowledge Technology (KTW 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 295))

Included in the following conference series:

Abstract

A random forest method has been selected to perform both gene selection and classification of the microarray data. The goal of this research is to develop and improve the random forest gene selection method. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. In this research, ten datasets that consists of different classes are used, which are Adenocarcinoma, Brain, Breast (Class 2 and 3), Colon, Leukemia, Lymphoma, NCI60, Prostate and Small Round Blue-Cell Tumor (SRBCT). Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, J.W., Lee, J.B., Park, M., Song, S.H.: An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 48, 869–885 (2004)

    Article  MathSciNet  Google Scholar 

  2. Chin, Y.L., Deris, S.: A Study On Gene Selection And Classification Algorithms For Classification Of Microarray Gene Expression Data. Jurnal Teknologi. 43(D), 111–124 (2005)

    Google Scholar 

  3. Díaz-Uriarte, R., Alvarez de Andrés, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006 7(3) (2006)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 26(2), 123–140 (1996)

    Google Scholar 

  5. Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20, 2429–2437 (2004)

    Article  Google Scholar 

  6. Ramaswamy, S., Ross, K.N., Lander, E.S., Golub, T.R.: A molecular signature of metastasis in primary solid tumors. Nature Genetics 33, 49–54 (2003)

    Article  Google Scholar 

  7. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002)

    Article  Google Scholar 

  8. van’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A.M., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  9. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  10. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  11. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Losses, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson Jr., J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  12. Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S.S., de Rijn, M.V., Waltham, M., Pergamenschikov, A., Lee, J.C., Lashkari, D., Shalon, D., Myers, T.G., Weinstein, J.N., Botstein, D., Brown, P.O.: Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics 24(3), 227–235 (2000)

    Article  Google Scholar 

  13. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)

    Article  Google Scholar 

  14. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 6, 673–679 (2001)

    Article  Google Scholar 

  15. Svetnik, V., Liaw, A., Tong, C., Wang, T.: Application of Breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. Multiple Classier Systems 3077, 334–343 (2004)

    Article  Google Scholar 

  16. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, August 20-25, pp. 1137–1143 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moorthy, K., Mohamad, M.S. (2012). Random Forest for Gene Selection and Microarray Data Classification. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds) Knowledge Technology. KTW 2011. Communications in Computer and Information Science, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32826-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32826-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32825-1

  • Online ISBN: 978-3-642-32826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics