Skip to main content

Algorithmically Transitive Network: A Self-organizing Data-Flow Network with Learning

  • Conference paper
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010)

Abstract

A novel non-von Neumann computational model named “Algorithmically Transitive Network” (ATN) is presented. The ATN is a data-flow network composed of operation nodes and data edges. The calculation is propelled with node firing and token creation on the edges. After it finishes, teaching values are given to the answer nodes and an energy function is evaluated, which causes backward propagation of differential coefficients with respect to token variables or node parameters. The network’s topological alteration takes place based on these calculation/learning processes, and as a result, the algorithm of the network is refined. The basic scheme of the model is explained, and some experimental results on symbolic regression problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. aiSee: Commercial software for visualizing graphs with various algorithms such as rubberband, http://www.aisee.com/

  2. Downing, K.L.: Reinforced genetic programming. Genetic Programming and Evolvable Machines 2(3), 259–288 (2001)

    Article  MATH  Google Scholar 

  3. Haykin, S.: Neural networks and learning machines. Prentice-Hall, Inc. (2009)

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)

    Article  Google Scholar 

  5. Iba, H.: Multi-agent reinforcement learning with genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference (GP 1998), pp. 167–172 (1998)

    Google Scholar 

  6. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Boston (1992)

    MATH  Google Scholar 

  7. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Boston (1994)

    MATH  Google Scholar 

  8. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic programming III: darwinian invention and problem solving. MIT Press, Boston (1999)

    MATH  Google Scholar 

  9. Kumazawa, I.: Learning and neural network. Morikita Publishing Company, Tokyo (1998) (Japanese)

    Google Scholar 

  10. Mabu, S., Hirasawa, K., Hu, J.: A graph-based evolutionary algorithm: genetic network programming (GNP) and its extension using reinforcement learning. Evolutionary Computation 15(3), 369–398 (2007)

    Article  Google Scholar 

  11. McCulloch, W.S., Pitts, W.: A logical calculation of the ideas immanent in nervous activity. Bullet. Math. Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142. Morgan Kaufmann (1999)

    Google Scholar 

  13. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)

    Article  Google Scholar 

  14. Nikolaev, N.Y., Iba, H.: Regularization Approach to Inductive Genetic Programming. IEEE Transactions on Evolutionary Computation 5(4), 359–375 (2001)

    Article  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: McClelland, J.L., Rumelhart (eds.) The PDP Research Group: Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce English text. Complex Systems 1, 145–168 (1987)

    MATH  Google Scholar 

  18. Sharp, J.A. (ed.): Data flow computing: Theory and practice. Ablex Publishing Corp., Norwood (1992)

    Google Scholar 

  19. Suzuki, H.: Mathematical folding of node chains in a molecular network. BioSystems 87, 125–135 (2007)

    Article  Google Scholar 

  20. Suzuki, H.: An approach toward emulating molecular interaction with a graph. Australian Journal of Chemistry 59, 869–873 (2006)

    Article  Google Scholar 

  21. Suzuki, H.: A network cell with molecular agents that divides from centrosome signals. BioSystems 94, 118–125 (2008)

    Article  Google Scholar 

  22. Suzuki, H., Ohsaki, H., Sawai, H.: A Network-Based Computational Model with Learning. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS, vol. 6079, pp. 193–193. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Suzuki, H., Ohsaki, H., Sawai, H.: Algorithmically Transitive Network: a new computing model that combines artificial chemistry and information-communication engineering. In: Proceedings of the 24th Annual Conference of Japanese Society for Artificial Intelligence (JSAI), pp. 2H1-OS4-5 (2010) (Japanese)

    Google Scholar 

  24. Suzuki, H., Ohsaki, H., Sawai, H.: An agent-based neural computational model with learning. Frontiers in Neuroscience. Conference Abstract: Neuroinformatics (2010), doi:10.3389/conf.fnins.2010.13.00021

    Google Scholar 

  25. Teller, A., Veloso, M.: PADO: Learning tree-structured algorithm for orchestration into an object recognition system. Carnegie Mellon University Technical Report, CMU-CS-95-101 (1995)

    Google Scholar 

  26. Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture. ACM Computer Communication Review 26(2), 5–18 (1996)

    Article  Google Scholar 

  27. Werbos, P.J.: The roots of backpropagation: From ordered derivatives to neural networks and political forecasting. In: Adaptive and Learning Systems for Signal Processing, Communications and Control Series. Wiley Interscience (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Suzuki, H., Ohsaki, H., Sawai, H. (2012). Algorithmically Transitive Network: A Self-organizing Data-Flow Network with Learning. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32615-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics