Skip to main content

Control of Snake Type Biomimetic Structure

  • Conference paper
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010)

Abstract

Robotic cooperative tasks impose, in many cases, a grasping action. Grasping by coiling it is one of the most versatile action. The present article propose a frequency stability criterion based on the Kahman – Yakubovich – Popov Lemma for the hyper-redundant arms with continuum element that performs the grasping function by coiling. Dynamics of the biomimetical robot during non-contact and contact operations, for the position control, is studied. An extension of the Popov criterion is developed. The P control algorithms based on SMA snake-type robot actuators are introduced. Numerical simulations and experimental results of the snake type robot motion toward an imposed target are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hemami, A.: Design of light weight flexible robot arm. In: Robots 8 Conference Proceedings, Detroit, USA, pp. 1623–1640 (1984)

    Google Scholar 

  2. Gravagne, I.A., Walker, I.D.: On the kinematics of remotely - actuated continuum robots. In: Proc. 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, pp. 2544–2550 (2000)

    Google Scholar 

  3. Gravagne, I.A., Walker, I.D.: Kinematic Transformations for Remotely-Actuated Planar Continuum Robots. In: Proc. 2000 IEEE Int. Conf. on Rob. and Aut., San Francisco, pp. 19–26 (2000)

    Google Scholar 

  4. Gravagne, I.A., Rahn, C.D., Walker, I.D.: Good Vibrations: A Vibration Damping Setpoint Controller for Continuum Robots. In: Proc. 2001 IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 3877–3884 (2001)

    Google Scholar 

  5. Gravagne, I.A., Walker, I.D.: Uniform Regulation of a Multi-Section Continuum Manipulator. In: Proc. IEEE Int. Conf. on Rob. and Aut., Washington, A1-15, pp. 1519–1524 (2002)

    Google Scholar 

  6. Chirikjian, G.S., Burdick, J.W.: An obstacle avoidance algorithm for hyper-redundant manipulators. In: Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, Ohio, pp. 625–631 (1990)

    Google Scholar 

  7. Mochiyama, H., Kobayashi, H.: The shape Jacobian of a manipulator with hyper degrees of freedom. In: Proc. 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, pp. 2837–2842 (1999)

    Google Scholar 

  8. Robinson, G., Davies, J.B.C.: Continuum robots – a state of the art. In: Proc. 1999 IEEE Int. Conf. on Rob and Aut., Detroit, Michigan, pp. 2849–2854 (1999)

    Google Scholar 

  9. Ivanescu, M., Stoian, V.: A variable structure controller for a tentacle manipulator. In: Proc. IEEE Int. Conf. on Robotics and Aut., Nagoya, pp. 3155–3160 (1995)

    Google Scholar 

  10. Ivanescu, M., Florescu, M.C., Popescu, N., Popescu, D.: Position and Force Control of the Grasping Function for a Hyperredundant Arm. In: Proc. of IEEE Int. Conf. on Rob. and Aut., Pasadena, California, pp. 2599–2604 (2008)

    Google Scholar 

  11. Camarillo, D., Milne, C.: Mechanics Modeling of Tendon – Driven Continuum Manipulators. IEEE Trans. on Robotics 24(6), 1262–1273 (2008)

    Article  Google Scholar 

  12. Wongratanaphisan, T., Cole, M.: Robust Impedance Control of a Flexible Structure Mounted Manipulator Performing Contact Tasks. IEEE Trans. on Robotics 25(2), 445–451 (2009)

    Article  MATH  Google Scholar 

  13. Grant, D., Hayward, V.: Constrained Force Control of SMA Actuators. In: Proc. ICRA 2000, San Francisco, pp. 1314–1320 (2000)

    Google Scholar 

  14. Mihlin, S.G.: Variationnie Metodi b Matematiceskvi Fizike. Nauka, Moscva (1970)

    Google Scholar 

  15. Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall International Editions (1991)

    Google Scholar 

  16. Ivanescu, M., Bizdoaca, N., Florescu, M.C., Popescu, N., Popescu, D.: Frequency Criteria for the Grasping Control of a Hyper-Redundant Robot. In: Proc. of IEEE Int. Conf. on Rob. and Aut. (ICRA 2010), Anchorage, Alaska, pp. 1542–1549 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ivanescu, M., Bizdoaca, N., Hamdan, H., Eltabach, M., Florescu, M. (2012). Control of Snake Type Biomimetic Structure. In: Suzuki, J., Nakano, T. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32615-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32615-8_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32614-1

  • Online ISBN: 978-3-642-32615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics