Skip to main content

Computational Complexity of Smooth Differential Equations

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

The computational complexity of the solution h to the ordinary differential equation h(0) = 0, h′(t) = g(t, h(t)) under various assumptions on the function g has been investigated in hope of understanding the intrinsic hardness of solving the equation numerically. Kawamura showed in 2010 that the solution h can be PSPACE-hard even if g is assumed to be Lipschitz continuous and polynomial-time computable. We place further requirements on the smoothness of g and obtain the following results: the solution h can still be PSPACE-hard if g is assumed to be of class C 1; for each k ≥ 2, the solution h can be hard for the counting hierarchy if g is of class C k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ko, K.: Complexity Theory of Real Functions. Birkhäuser Boston (1991)

    Google Scholar 

  2. Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)

    Google Scholar 

  3. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Computational Complexity 19(2), 305–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pour-El, M., Richards, I.: A computable ordinary differential equation which possesses no computable solution. Annals of Mathematical Logic 17(1-2), 61–90 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill (1955)

    Google Scholar 

  6. Ko, K.: On the computational complexity of ordinary differential equations. Information and Control 58(1-3), 157–194 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller, W.: Recursive function theory and numerical analysis. Journal of Computer and System Sciences 4(5), 465–472 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Müller, N.: Uniform Computational Complexity of Taylor Series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  9. Ko, K., Friedman, H.: Computing power series in polynomial time. Advances in Applied Mathematics 9(1), 40–50 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawamura, A.: Complexity of initial value problems. Fields Institute Communications (to appear)

    Google Scholar 

  11. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Transactions on Computation Theory 4(2), Article 5 (2012)

    Google Scholar 

  12. Bournez, O., Graça, D.S., Pouly, A.: Solving Analytic Differential Equations in Polynomial Time over Unbounded Domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Wagner, K.: The complexity of combinatorial problems with succinct input representation. Acta Informatica 23(3), 325–356 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Torán, J.: Complexity classes defined by counting quantifiers. Journal of the ACM 38(3), 752–773 (1991)

    Article  Google Scholar 

  15. Kawamura, A.: On function spaces and polynomial-time computability. Dagstuhl Seminar 11411: Computing with Infinite Data (2011)

    Google Scholar 

  16. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Uniform polytime computable operators on univariate real analytic functions. In: Proceedings of the Ninth International Conference on Computability and Complexity in Analysis (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawamura, A., Ota, H., Rösnick, C., Ziegler, M. (2012). Computational Complexity of Smooth Differential Equations. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics