Skip to main content

Strategy Machines and Their Complexity

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

We introduce a machine model for the execution of strategies in (regular) infinite games that refines the standard model of Mealy automata. This model of controllers is formalized in the terminological framework of Turing machines. We show how polynomially sized controllers can be found for Muller and Streett games. We are able to distinguish aspects of executing strategies (“size”, “latency”, “space consumption”) that are not visible in Mealy automata. Also, lower bound results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from psl. ENTCS 190, 3–16 (2007)

    Google Scholar 

  2. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS 1997, IEEE Computer Society. Washington, DC (1997)

    Google Scholar 

  3. Hunter, P., Dawar, A.: Complexity Bounds for Regular Games (Extended Abstract). In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 495–506. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Hunter, P., Dawar, A.: Complexity bounds for muller games. Theoretical Computer Science (TCS) (2008) (submitted)

    Google Scholar 

  5. Horn, F.: Explicit muller games are ptime. In: FSTTCS, pp. 235–243 (2008)

    Google Scholar 

  6. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29, 132–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holtmann, M., Löding, C.: Memory Reduction for Strategies in Infinite Games. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 253–264. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Gelderie, M., Holtmann, M.: Memory reduction via delayed simulation. In: iWIGP, pp. 46–60 (2011)

    Google Scholar 

  9. Grohe, M., Hernich, A., Schweikardt, N.: Lower bounds for processing data with few random accesses to external memory. J. ACM 56, 12:1–12:58 (2009)

    Google Scholar 

  10. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Madhusudan, P.: Synthesizing reactive programs. In: Proceedings of Comp. Sci. Log., CSL 2011, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 428–442 (2011)

    Google Scholar 

  12. Gelderie, M.: Strategy machines and their complexity. Technical Report AIB-2012-04, RWTH Aachen University (2012), http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2012/2012-04.pdf

  13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata logics, and infinite games: a guide to current research. Springer, New York (2002)

    MATH  Google Scholar 

  14. Löding, C.: Infinite games and automata theory. In: Apt, K.R., Grädel, E. (eds.) Lectures in Game Theory for Computer Scientists, Cambridge UP (2011)

    Google Scholar 

  15. Perrin, D., Pin, J.: Infinite words: automata, semigroups, logic and games. In: Pure and Applied Mathematics. Elsevier (2004)

    Google Scholar 

  16. Büchi, J.R., Landweber, L.H.: Solving Sequential Conditions by Finite-State Strategies. Trans. of the AMS 138, 295–311 (1969)

    Google Scholar 

  17. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65(2), 149–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 60–65 (1982)

    Google Scholar 

  19. Safra, S.: Exponential determinization for ω-automata with strong-fairness acceptance condition (extended abstract). In: STOC 1992, pp. 275–282 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gelderie, M. (2012). Strategy Machines and Their Complexity. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics