Skip to main content

Formula Complexity of Ternary Majorities

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

Abstract

It is known that any self-dual Boolean function can be decomposed into compositions of 3-bit majority functions. In this paper, we define a notion of a ternary majority formula, which is a ternary tree composed of nodes labeled by 3-bit majority functions and leaves labeled by literals. We study their complexity in terms of formula size. In particular, we prove upper and lower bounds for ternary majority formula size of several Boolean functions. To devise a general method to prove the ternary majority formula size lower bounds, we give an upper bound for the largest separation between ternary majority formula size and DeMorgan formula size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreev, A.E.: On a method for obtaining more than quadratic effective lower bounds for the complexity of π-scheme. Moscow University Mathematics Bulletin 42(1), 63–66 (1987)

    MATH  Google Scholar 

  2. Bioch, J.C., Ibaraki, T.: Decompositions of positive self-dual boolean functions. Discrete Mathematics 140(1-3), 23–46 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part I: Post’s lattice with applications to complexity theory. ACM SIGACT News 34(4), 38–52 (2003)

    Article  Google Scholar 

  4. Chockler, H., Zwick, U.: Which bases admit non-trivial shrinkage of formulae? Computational Complexity 10(1), 28–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fischer, M.J., Meyer, A.R., Paterson, M.S.: Ω(n log n) lower bounds on length of Boolean formulas. SIAM Journal on Computing 11(3), 416–427 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Håstad, J.: The shrinkage exponent of De Morgan formulas is 2. SIAM Journal on Computing 27(1), 48–64 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hrubeš, P., Jukna, S., Kulikov, A., Pudlák, P.: On convex complexity measures. Theoretical Computer Science 411, 1842–1854 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed systems. IEEE Transactions on Parallel and Distributed Computing PDS-4(7), 779–794 (1993)

    Article  Google Scholar 

  9. Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication complexity. SIAM Journal on Discrete Mathematics 8(1), 76–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khrapchenko, V.M.: Complexity of the realization of a linear function in the case of π-circuits. Mathematical Notes 9, 21–23 (1971)

    Article  MATH  Google Scholar 

  11. Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical formula size lower bounds. Computational Complexity 15(2), 163–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, T.: A New Rank Technique for Formula Size Lower Bounds. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 145–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Neciporuk, E.I.: A boolean function. DOKLADY: Russian Academy of Sciences Doklady. Mathematics (formerly Soviet Mathematics–Doklady) 7, 999–1000 (1966)

    Google Scholar 

  14. Paterson, M.S., Pippenger, N., Zwick, U.: Optimal carry save networks. In: Boolean Function Complexity. London Mathematical Society Lecture Note Series, vol. 169, pp. 174–201. Cambridge University Press (1992)

    Google Scholar 

  15. Paterson, M.S., Zwick, U.: Shallow circuits and concise formulae for multiple addition and multiplication. Computational Complexity 3(3), 262–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Post, E.L.: The two-valued iterative systems of mathematical logic. Annals Mathematical Studies, vol. 5. Princeton University Press (1941)

    Google Scholar 

  17. Pratt, V.R.: The effect of basis on size of Boolean expressions. In: Proceedings of the 16th Annual Symposium on Foundations of Computer Science (FOCS 1975), October 13-15, pp. 119–121. IEEE (1975)

    Google Scholar 

  18. Valiant, L.G.: Short monotone formulae for the majority function. Journal of Algorithms 5(3), 363–366 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ueno, K. (2012). Formula Complexity of Ternary Majorities. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics