Skip to main content

Retrotransposons and the Eternal Leaves

  • Chapter
  • First Online:
Plant Transposable Elements

Part of the book series: Topics in Current Genetics ((TCG,volume 24))

Abstract

The resurrection plant Craterostigma plantagineum can tolerate up to 96% loss of its relative water content and recover within hours after rehydration. In callus tissue desiccation tolerance is induced by pre-incubation with Abscisic acid (ABA). In callus and plant ABA treatment and dehydration induce a set of dehydration-responsive genes. T-DNA activation tagging led to the identification of CDT-1, a dehydration- and ABA-responsive gene, which renders calli tolerant without ABA pre-incubation. Molecular analysis indicated that CDT-1 is a retroelement, present in multiple copy in the genome, able to direct the synthesis of small RNAs responsible for desiccation tolerance. Transposition of CDT-1 retroelements have progressively increased the capacity of the species to synthesize small RNAs and thus recover after desiccation. This may be a case of evolution towards the acquisition of a new trait, stimulated by the environment acting directly on intra-genomic DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 13:3357–3365

    Article  Google Scholar 

  • Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  Google Scholar 

  • Bernacchia G, Furini A (2004) Biochemical and molecular responses to water stress in resurrection plants. Physiol Plant 121:175–181

    Article  PubMed  CAS  Google Scholar 

  • Bernacchia G, Salamini F, Bartels D (1996) Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum. Plant Physiol 111:1043–1050

    PubMed  CAS  Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B, Physiological ecology II. Springer, Berlin

    Google Scholar 

  • Bianchi G, Gamba A, Morelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359

    Article  Google Scholar 

  • Chandler J, Bartels D (1997) Structure and function of the vp1 gene homologue from the resurrection plant Craterostigma plantagineum Hochst. Mol Gen Genet 256:539–546

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (2004) Scrophulariaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, Berlin, pp 333–432

    Google Scholar 

  • Furini A (2008) CDT retroelement: the stratagem to survive extreme vegetative dehydration. Plant Signal Behav 3:1–3

    Article  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1994) Agrobacterium-mediated transformation of the desiccation-tolerant plant Craterostigma plantagineum. Plant Cell Rep 14:102–106

    Article  CAS  Google Scholar 

  • Furini A, Parcy F, Salamini F, Bartels D (1996) Differential regulation of two ABA-inducible genes from Craterostigma plantagineum in transgenic Arabidopsis plants. Plant Mol Biol 30:343–349

    Article  PubMed  CAS  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in Southern Africa. Science 174:1033–1034

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1987) Desiccation tolerant plants in South America. Oecologia 74:133–136

    Article  Google Scholar 

  • Gaff DF, Loveys BR (1984) Abscisic acid content and effects during dehydration of detached leaves of desiccation tolerant plants. J Exp Bot 35:1350–1358

    Article  CAS  Google Scholar 

  • Galau GW, Hugles DW, Dure L III (1986) Abscisic acid induction of cloned cotton late embryogenesis abundant (LEA) messenger RNAs. Plant Mol Biol 7:155–170

    Article  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Hartung W, Schiller P, Dietz KJ (1998) Physiology of poikilohydric plants. Cell Biol Physiol Prog Bot 59:299–327

    CAS  Google Scholar 

  • Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179:877–887

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Martiensen R (2008) Great leap forward? Transposable elements, small interfering RNA and adaptive Lamarckian evolution. New Phytol 179:570–572

    Article  Google Scholar 

  • Michel D, Salamini F, Bartels D, Dale P, Baga M, Szalay A (1993) Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plants Craterostigma plantagineum. Plant J 4:29–40

    Article  PubMed  CAS  Google Scholar 

  • Michel D, Furini A, Salamini F, Bartels D (1994) Structure and regulation of an ABA- and desiccation-responsive gene. Plant Mol Biol 24:549–560

    Article  PubMed  CAS  Google Scholar 

  • Neale AD, Blomstedt CK, Bronson P, Le T-N, Guthridge K, Evans J, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ 23:265–277

    Article  CAS  Google Scholar 

  • Oliver MJ, Bewley JD (1997) Desiccation tolerance of plant tissues: a mechanistic overview. Hort Rev 18:171–214

    Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Article  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of ABI3 locus and endogenous abscisic acid. Plant Cell 6:1567–1582

    PubMed  CAS  Google Scholar 

  • Phillips JR, Oliver MJ, Bartels D (2002) Molecular genetics of desiccation and tolerant systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Phillips JR, Fischer E, Baron M, van den Dries N, Facchinelli F, Kutzer M, Rahmanzadeh R, Remus D, Bartels D (2008) Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J 54:938–948

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Smith-Espinoza CJ, Phillips JR, Salamini F, Bartels D (2005) Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance. Mol Gen Genet 274:364–372

    CAS  Google Scholar 

  • Stefanov K, Markovska Y, Kimenov G, Popov S (1992) Lipid and sterol changes in leaves of Haberlea rhodopensis and Ramonda serbica at transition from biosis into anabiosis and vice versa caused by water stress. Phytochemistry 31:2309–2314

    Article  CAS  Google Scholar 

  • Velasco R, Salamini F, Bartels D (1998) Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant Craterostigma plantagineum Hochst. Planta 204:459–471

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Leopold AC (1989) The glassy state in corn embryos. Plant Physiol 89:977–981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was mainly carried out at the Max-Planck-Institute (Cologne, Germany), supported in part by a grant of the EC BRIDGE programme. The supervision of Profs. D. Bartels and F. Salamini is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Furini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furini, A. (2012). Retrotransposons and the Eternal Leaves. In: Grandbastien, MA., Casacuberta, J. (eds) Plant Transposable Elements. Topics in Current Genetics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31842-9_16

Download citation

Publish with us

Policies and ethics