Skip to main content

Quasi-Lovász Extensions and Their Symmetric Counterparts

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

We introduce the concept of quasi-Lovász extension as being a mapping \(f: I^n \rightarrow \textrm{I\!R}\) defined over a nonempty real interval I containing the origin, and which can be factorized as f(x 1,…,x n ) = L(ϕ(x 1),…,ϕ(x n )), where L is the Lovász extension of a pseudo-Boolean function \(\psi:\{0,1\}^n\rightarrow \textrm{I\!R}\) (i.e., the function \(L:\textrm{I\!R}^n\rightarrow \textrm{I\!R}\) whose restriction to each simplex of the standard triangulation of [0,1]n is the unique affine function which agrees with ψ at the vertices of this simplex) and \(\varphi\colon I\rightarrow \textrm{I\!R}\) is a nondecreasing function vanishing at the origin. These functions appear naturally within the scope of decision making under uncertainty since they subsume overall preference functionals associated with discrete Choquet integrals whose variables are transformed by a given utility function.

To axiomatize the class of quasi-Lovász extensions, we propose generalizations of properties used to characterize the Lovász extensions, including a comonotonic version of modularity and a natural relaxation of homogeneity. A variant of the latter property enables us to axiomatize also the class of symmetric quasi-Lovász extensions, which are compositions of symmetric Lovász extensions with 1-place nondecreasing odd functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. STUDFUZZ. Springer, Berlin (2007)

    Google Scholar 

  2. Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Handbook of Measure Theory, vol. II, pp. 1329–1379. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  3. Bouyssou, D., Dubois, D., Prade, H., Pirlot, M. (eds.): Decision-Making Process - Concepts and Methods. ISTE/John Wiley, London (2009)

    Google Scholar 

  4. Couceiro, M., Marichal, J.-L.: Axiomatizations of Lovász extensions and symmetric Lovász extensions of pseudo-Boolean functions. Fuzzy Sets and Systems 181(1), 28–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Couceiro, M., Marichal, J.-L.: Axiomatizations of quasi-Lovász extensions of pseudo-Boolean functions. Aequationes Mathematicae 82, 213–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Campos, L.M., Bolaños, M.J.: Characterization and comparison of Sugeno and Choquet integrals. Fuzzy Sets and Systems 52(1), 61–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions. Encyclopedia of Mathematics and its Applications, vol. 127. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy measures and integrals - Theory and applications. STUDFUZZ, vol. 40. Physica-Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  9. Hammer, P., Rudeanu, S.: Boolean methods in operations research and related areas. Springer, Heidelberg (1968)

    Book  MATH  Google Scholar 

  10. Lovász, L.: Submodular functions and convexity. In: 11th Int. Symp., Mathematical programming, Bonn 1982, pp. 235–257 (1983)

    Google Scholar 

  11. Mesiar, R., Mesiarová-Zemánková, A.: The ordered modular averages. IEEE Trans. Fuzzy Syst. 19(1), 42–50 (2011)

    Article  Google Scholar 

  12. Singer, I.: Extensions of functions of 0-1 variables and applications to combinatorial optimization. Numer. Funct. Anal. Optimization 7, 23–62 (1984)

    Article  MATH  Google Scholar 

  13. Šipoš, J.: Integral with respect to a pre-measure. Mathematica Slovaca 29(2), 141–155 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Research 26(2), 305–321 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couceiro, M., Marichal, JL. (2012). Quasi-Lovász Extensions and Their Symmetric Counterparts. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31724-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31724-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31723-1

  • Online ISBN: 978-3-642-31724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics