Skip to main content

Lung Tumor Segmentation Using Electric Flow Lines for Graph Cuts

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7325))

Included in the following conference series:

Abstract

Lung cancer is the most common cause of cancer-related death. A common treatment is radiotherapy where the lung tumors are irradiated with ionizing radiation. The treatment is typically fractionated, i.e. spread out over time, allowing healthy tissue to recover between treatments and allowing tumor cells to be hit in their most sensitive phase. Changes in tumors over the course of treatment allows for an adaptation of the radiotherapy plan based on 3D computer tomography imaging. This paper introduces a method for segmentation of lung tumors on consecutive computed tomography images. These images are normally only used for correction of movements. The method uses graphs based on electric flow lines. The method offers several advantages when trying to replicate manual segmentations. The method gave a dice coefficient of 0.85 and performed better than level set methods and deformable registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weber, W., et al.: Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology 21, 2651–2657 (2003)

    Article  Google Scholar 

  2. Siker, M.L., Tomé, W.A., Mehta, M.P.: Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? International Journal of Radiation Oncology Biology Physics 66, 135–141 (2006)

    Article  Google Scholar 

  3. Bral, S., et al.: Daily megavoltage computed tomography in lung cancer radiotherapy: correlation between volumetric changes and local outcome. International Journal of Radiation Oncology Biology Physics 80, 1338–1342 (2011)

    Article  Google Scholar 

  4. Kuhnigk, J.M., et al.: Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic ct scans. IEEE Trans. Medical Imaging 25, 417–434 (2006)

    Article  Google Scholar 

  5. Fetita, C.I., Prêteux, F., Beigelman-Aubry, C., Grenier, P.: 3D Automated Lung Nodule Segmentation in HRCT. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 626–634. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Faggiano, E., et al.: Validation of an elastic registration technique to estimate anatomical lung modification in non-small-cell lung cancer tomotherapy. Radiation Oncology 6, 31 (2011)

    Article  Google Scholar 

  7. Wu, X., Chen, D.Z.: Optimal Net Surface Problems with Applications. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1029–1042. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Yin, Y., Song, Q., Sonka, M.: Electric Field Theory Motivated Graph Construction for Optimal Medical Image Segmentation. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 334–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Petersen, J., et al.: Optimal graph based segmentation using flow lines with application to airway wall segmentation. Information Processing in Medical Imaging 22, 49–60 (2011)

    Article  Google Scholar 

  10. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: IEEE Computer Society Conference on Computer Vision Pattern Recognition Proceedings, pp. 648–655 (1998)

    Google Scholar 

  11. Jørgensen, P., Hansen, K., Larsen, R., Bowen, J.: A framework for automatic segmentation in three dimensions of microstructural tomography data. Ultramicroscopy 110, 216–228 (2010)

    Article  Google Scholar 

  12. Vester-Christensen, M., Erbou, S.G., Darkner, S., Larsen, R.: Accelerated 3d image registration. In: SPIE Medical Imaging (2007)

    Google Scholar 

  13. Adkison, J.B., et al.: Dose escalated, hypofractionated radiotherapy using helical tomotherapy for inoperable non-small cell lung cancer: preliminary results of a risk-stratified phase I dose escalation study. Technology in Cancer Research Treatment 7, 441–447 (2008)

    Google Scholar 

  14. Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: a computational environment for radiotherapy research. Medical Physics 30, 979–985 (2003)

    Article  Google Scholar 

  15. Steenbakkers, R.J.H.M., et al.: Reduction of observer variation using matched ct-pet for lung cancer delineation: a three-dimensional analysis. International Journal of Radiation Oncology Biology Physics 64, 435–448 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hollensen, C., Cannon, G., Cannon, D., Bentzen, S., Larsen, R. (2012). Lung Tumor Segmentation Using Electric Flow Lines for Graph Cuts. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31298-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31297-7

  • Online ISBN: 978-3-642-31298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics