Skip to main content

Higher Order City Voronoi Diagrams

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

Abstract

We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L 1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of k th-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n + kc), where c is the complexity of the transportation network. This is quite different from the bound O(k(n − k)) in the Euclidean metric [12]. For the special case where k = n − 1 the complexity in the Euclidean metric is O(n), while that in the city metric is Θ(nc). Furthermore, we develop an O(k 2(n + c)log(n + c))-time iterative algorithm to compute the k th-order city Voronoi diagram and an O(nclog2(n + c)logn)-time divide-and-conquer algorithm to compute the farthest-site city Voronoi diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons, and the city Voronoi diagram. Discrete Comput. Geom. 31, 17–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, P.K., de Berg, M., Matoušek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Internat. J. Comput. Geom. Appl. 2, 363–381 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bae, S.W., Chwa, K.-Y.: Shortest Paths and Voronoi Diagrams with Transportation Networks Under General Distances. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1007–1018. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Boissonnat, J.D., Devillers, O., Teillaud, M.: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis. Algorithmica 9, 329–356 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bae, S.W., Kim, J.-H., Chwa, K.-Y.: Optimal construction of the city Voronoi diagram. Internat. J. Comput. Geom. Appl. 19(2), 95–117 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi diagrams. IEEE Transactions on Computers 36(11), 1349–1454 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.-S.: Farthest-polygon Voronoi diagrams. Comput. Geom. Theory Appl. 44, 234–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gemsa, A., Lee, D.T., Liu, C.-H., Wagner, D.: Higher order city Voronoi diagrams. ArXiv e-prints, arXiv:1204.4374 (April 2012)

    Google Scholar 

  11. Görke, R., Shin, C.-S., Wolff, A.: Constructing the city Voronoi diagram faster. Internat. J. Comput. Geom. Appl. 18(4), 275–294 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478–487 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mulmuley, K.: A fast planar partition algorithm, I. J. Symbolic Comput. 10(3-4), 253–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mulmuley, K.: On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom. 6, 307–338 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gemsa, A., Lee, D.T., Liu, CH., Wagner, D. (2012). Higher Order City Voronoi Diagrams. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics