Skip to main content

Physiology of the Potato–Potato Virus Y Interaction

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 74))

Abstract

Many morphological, physiological, and phytochemical changes in plants are caused by biotic stress. Response of plants to various pathogenic microorganisms and pests is described at different levels: changed morphology of the plant and development of symptoms like lesions and necrosis; alterations in hormone concentrations; signaling molecules; secondary metabolism; pathogenesis-related proteins; and mRNA or gene expression. Due to its small size and therefore early description of the genome, Arabidopsis thaliana is a model plant in which metabolic processes are well described and constitutes a basis for research on other plants (Dardick et al. 2000; Pieterse et al. 2009; Simon et al. 2010; Wan et al. 2002). Nevertheless, plants from other families possess specific metabolic pathways not observed in this model plant (e.g., tuberization is specific for potato), which gives urgency to research on a wider variety of plant families. There are only limited reports on the responses of potato plants, especially to virus infection. The availability of the potato genome sequence opens up the possibility of advancing the understanding of the physiology of potato response to virus infection.

Interaction between potato plants and Potato virus Y (PVY), the most devastating potato virus, will be described, starting with the biological variability of PVY, available detection methods, viral movement, and its accumulation in plants. The response of potato plants to PVY infection will be described, first the symptoms’ development from different points of view, from macroscopical to cytological, and second the main metabolic pathways involved in response to infection. Alterations in photosynthesis, hormonal pathways, defense and signaling mechanisms, and other pathways will be demonstrated. The most important methods enabling disclosure of potato response mechanisms and pathways will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants Part I: Technologies in proteome establishment. J Chromatogr B 815:109–123

    CAS  Google Scholar 

  • Alamillo JM, Saenz P, Garcia JA (2006) Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum poxvirus in tobacco. Plant J 48:217–227

    PubMed  CAS  Google Scholar 

  • Allwood JW, De Vos RC, Moing A, Deborde C, Erban A, Kopka J, Goodacre R, Hall RD (2011) Plant metabolomics and its potential for systems biology research background concepts, technology, and methodology. In: Jameson D, Verma M, Westerhoff HV (eds) Methods in systems biology, 1st edn, Methods in enzymology. Elsevier, London

    Google Scholar 

  • Anžlovar S, Kovač M, Ravnikar M (1996) Photosyntetic pigments in healthy and virus-infected potato plantlets (Solanum tuberosum L.) grown in vitro. Phyton 36:221–230

    Google Scholar 

  • Baebler Š, Krečič-Stres H, Rotter A, Kogovšek P, Cankar K, Kok EJ, Gruden K, Kovač M, Žel J, Pompe-Novak M, Ravnikar M (2009) PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10:263–275

    PubMed  CAS  Google Scholar 

  • Baebler Š, Stare K, Kovač M, Blejec A, Prezelj N, Stare T, Kogovšek P, Pompe-Novak M, Rosahl S, Ravnikar M, Gruden K (2011) Dynamics of responses in compatible potato—Potato virus Y interaction are modulated by salicylic acid. PLoS One 6(12):e29009

    PubMed  CAS  Google Scholar 

  • Barker H, McGeachy K, Na T, Gruden K, Žel J, Browning I (2009) Comparison of genome sequence of PVY isolates with biological properties. Am J Potato Res 86:227–238

    CAS  Google Scholar 

  • Beczner L, Horvath J, Romhanyi I, Forster H (1984) Studies on the etiology of tuber necrotic ringspot disease in potato. Potato Res 27:339–352

    Google Scholar 

  • Blanc S, Lopez-Moya JJ, Wang R, Garcia-Lampasona S, Thornbury DW, Pirone TP (1997) A specific interaction between coat protein and helper component correlates with aphid transmission of a Potyvirus. Virology 231:141–147

    PubMed  CAS  Google Scholar 

  • Blanchard A, Rolland M, Lacroix C, Kerlan C, Jacquot E (2008) Potato virus Y: a century of evolution. Curr Top Virol 7:21–32

    CAS  Google Scholar 

  • Blaszczak W, Chrzanowska M, Fornal J, Zimnoch-Guzowska E, Palacios MC, Vacek J (2005) Scanning electron microscopic investigation of different types of necroses in potato tubers. Food Control 16:747–752

    Google Scholar 

  • Boonham N, Barker I (1998) Strain specific recombinant antibodies to potato virus Y potyvirus. J Virol Methods 74:193–199

    PubMed  CAS  Google Scholar 

  • Boonham N, Walsh K, Preston S, North J, Smith P, Barker I (2002) The detection of tuber necrotic isolates of Potato virus Y, and the accurate discrimination of PVYO, PVYN and PVYC strains using RT-PCR. J Virol Methods 102:103–112

    PubMed  CAS  Google Scholar 

  • Carr JP, Lewsey MG, Palukaitis P (2010) Signaling in induced resistance. In: Carr JP, Loebenstein G (eds) Advances in virus research. Elsevier, London. doi:10.1016/S0065-3527(10)76003-6

    Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    PubMed  CAS  Google Scholar 

  • Cavatorta J, Perez KW, Gray SM, Van Eck J, Yeam I, Jahn M (2011) Engineering virus resistance using a modified potato gene. Plant Biotechnol J 9:1014–1021

    PubMed  CAS  Google Scholar 

  • Cervantes FA, Alvarez JM (2011) Within plant distribution of Potato Virus Y in hairy nightshade (Solanum sarrachoides): an inoculum source affecting PVY aphid transmission. Virus Res 159:194–200

    PubMed  CAS  Google Scholar 

  • Charzanowska M (1991) New isolates of the necrotic strain of potato virus Y (PVYN) found recently in Poland. Potato Res 34:179–182

    Google Scholar 

  • Chikh Ali M, Maoka T, Natsuaki K, Natsuaki T (2010) The simultaneous differentiation of Potato virus Y strains including the newly described strain PVY(NTN-NW) by multiplex PCR assay. J Virol Methods 165:15–20

    PubMed  CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic Actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–218

    PubMed  CAS  Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    PubMed  CAS  Google Scholar 

  • Crosslin JM (2005) Serological and molecular detection of tobacco veinal necrosis isolates of Potato virus Y (PVYN) from potatoes grown in the Western United States. Am J Potato Res 82:263–269

    CAS  Google Scholar 

  • Danks C, Barker I (2000) On-site detection of plant pathogens using lateral-flow devices. EPPO Bulletin 30:421–426

    Google Scholar 

  • Dardick DC, Golem S, Culver JN (2000) Susceptibility and symptom development in Arabidopsis thaliana to tobacco mosaic virus is influenced by virus cell-to-cell movement. Mol Plant Microbe Interact 13:1139–1144

    PubMed  CAS  Google Scholar 

  • Dermastia M, Ravnikar M (1996) Altered cytokinin pattern and enhanced tolerance to potato virus Y(ntn) in the susceptible potato cultivar (Solanum tuberosum cv. Igor) grown in vitro. Physiol Mol Plant Pathol 48:65–71

    CAS  Google Scholar 

  • Dermastia M, Ravnikar M, Kovač M (1995) Increased cytokinin-9-glucosylation in roots of susceptible Solanum tuberosum cultivar Infected by potato virus YNTN. Mol Plant Microbe Interact 8:327–330

    CAS  Google Scholar 

  • Dicenta F, Martinez-Gomez P, Rubio M, Audergon JM (2003) Localisation and movement of Plum pox virus in apricot stem tissues. Ann Appl Biol 142:99–105

    Google Scholar 

  • Ding XS, Carter SA, Deom CM, Nelson RS (1998) Tobamovirus and Potyvirus accumulation in minor veins of inoculated leaves from representatives of the Solanaceae and Fabaceae. Plant Physiol 116:125–136

    CAS  Google Scholar 

  • Dolenc J, Vilhar B, Dermastia M (2000) Systemic infection with potato virus Yntn alters the structure and activity of the shoot apical meristem in a susceptible potato cultivar. Physiol Mol Plant Pathol 56:33–38

    Google Scholar 

  • Dolja VV, Haldeman R, Robertson N, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491

    PubMed  CAS  Google Scholar 

  • Draper MD, Pasche JS, Gudmestad NC (2002) Factors influencing PVY development and disease expression in three potato cultivars. Am J Potato Res 79:155–165

    Google Scholar 

  • Galvino-Costa SBF, dos Reis FA, Camargos VV, Geraldino PS, Hu XJ, Nikolaeva OV, Kerlan C, Karasev AV (2011) A novel type of Potato virus Y recombinant genome, determined for the genetic strain PVYE. Plant Pathol. doi:10.1111/j.1365-3059.2011.02495.x

  • Glais L, Kerlan C, Tribodet M, Marie-Jeanne Tordo V, Robaglia C, Astier-Manifacier S (1996) Molecular characterization of potato virus Yn isolates by PCR-RFLP. Eur J Plant Pathol 102:655–662

    CAS  Google Scholar 

  • Glais L, Tribodet M, Kerlan C (2002) Genomic variability in Potato potyvirus Y (PVY): evidence that PVYnW and PVYntn variants are single to multiple recombinants between PVYo and PVYn isolates. Arch Virol 147:363–378

    PubMed  CAS  Google Scholar 

  • Glais L, Tribodet M, Kerlan C (2005) Specific detection of the PVY(N)-W variant of Potato virus Y. J Virol Methods 125:131–136

    PubMed  CAS  Google Scholar 

  • Gomez de Cedron M, Osaba L, Lopez L, Garcia JA (2006) Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement. Virus Res 116:136–145

    PubMed  CAS  Google Scholar 

  • Hinrichs J, Berger S, Shaw JG (1998) A hypersensitive response-like mechanism is involved in resistance of potato plants bearing the Ry(sto) gene to the potyviruses potato virus Y and tobacco etch virus. J Gen Virol 79:167–176

    PubMed  CAS  Google Scholar 

  • Hinrichs-Berger J, Harford M, Berger S, Buchenauer H (1999) Cytological responses of susceptible and extremely resistant potato plants to inoculation with potato virus Y. Physiol Mol Plant Pathol 55:143–150

    Google Scholar 

  • Iglesias VA, Meins F (2000) Movement of plant viruses is delayed in a β-1,3- glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166

    PubMed  CAS  Google Scholar 

  • Ion-Nagy L, Lansac M, Eyquard JP, Salvador B, Garcia JA, Le Gall O, Hernould M, Schurdi-Levraud V, Decroocq V (2006) PPV long-distance movement is occasionally permitted in resistant apricot hosts. Virus Res 120:70–78

    PubMed  Google Scholar 

  • Jacquot E, Tribodet M, Croizat F, Balme-Sinibaldi V, Kerlan C (2005) A single nucleotide polymorphism-based technique for specific characterization of YO and YN isolates of Potato virus Y (PVY). J Virol Methods 125:83–93

    PubMed  CAS  Google Scholar 

  • Karasev AV, Hu X, Brown CJ, Kerlan C, Nikolaeva OV, Crosslin JM, Gray SM (2011) Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY strains. Phytopathology 101:778–785

    PubMed  CAS  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098

    CAS  Google Scholar 

  • Kerlan C (2006) Potato virus Y, descriptions of plant viruses No. 414, Association of Applied Biologists, UK. Online. http://www.dpvweb.net/dpv/showdpv.php?dpvno=414. Accessed 01 Dec 2011

  • Kerlan C, Moury B (2008) Potato virus Y. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier, London

    Google Scholar 

  • Kerlan C, Nikolaeva OV, Hu X, Meacham T, Gray SM, Karasev AV (2011) Identification of the molecular make-up of the Potato virus Y strain PVY(Z): genetic typing of PVY(Z)-NTN. Phytopathology 101:1052–1060

    PubMed  CAS  Google Scholar 

  • Kogovšek P, Gow L, Pompe-Novak M, Gruden K, Foster GD, Boonham N, Ravnikar M (2008) Single-step RT real-time PCR for sensitive detection and discrimination of Potato virus Y isolates. J Virol Methods 149:1–11

    PubMed  Google Scholar 

  • Kogovšek P, Pompe-Novak M, Baebler Š, Rotter A, Gow L, Gruden K, Foster GD, Boonham N, Ravnikar M (2010) Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathol 59:1121–1132

    Google Scholar 

  • Kogovšek P, Kladnik A, Mlakar J, Tušek Žnidarič M, Dermastia M, Ravnikar M, Pompe-Novak M (2011) Distribution of Potato virus Y in potato plant organs, tissues, and cells. Phytopathology 101:1292–1300

    PubMed  Google Scholar 

  • Kovač M, Muller A, Milovanovič Jarh D, Milavec M, Duchting P, Ravnikar M (2009) Multiple hormone analysis indicates involvement of jasmonate signalling in the early defence of potato to potato virus YNTN. Biol Plant 53:195–199

    Google Scholar 

  • Krečič-Stres H, Vučak C, Ravnikar M, Kovač M (2005) Systemic Potato virus YNTN infection and levels of salicylic and gentisic acids in different potato genotypes. Plant Pathol 54:441–447

    Google Scholar 

  • Krzymowska M, Hennig J (1997) Simple and rapid technique to detect PVY presence in some Solanaceae plants. Acta Physiol Plant 19:95–99

    Google Scholar 

  • Kus M (1994) Krompir (Potato). ČZP Kmečki glas, Ljubljana

    Google Scholar 

  • Kus M (1995) Investigations of the sensitivity of potato cultivars to tuber necrotic ringspot strain of potato virus Y (PVYntn). In: Proceedings of the 9th EAPR virology section meeting, pp 135–138

    Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90:7089–7093

    PubMed  CAS  Google Scholar 

  • Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    PubMed  CAS  Google Scholar 

  • Lorenzen JH, Meacham T, Berger PH, Shiel PJ, Crosslin JM, Hamm PB, Kopp H (2006) Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Arch Virol V151:1055–1074

    Google Scholar 

  • Lorenzen J, Nolte P, Martin D, Pasche J, Gudmestad N (2008) NE-11 represents a new strain variant class of Potato virus Y. Arch Virol 153:517–525

    PubMed  CAS  Google Scholar 

  • Maki-Valkama T, Valkonen J, Lehtinen A, Pehu E (2001) Protection against potato virus Y (PVY) in the field in potatoes transformed with the PVY P1 Gene. Am J Potato Res 78:209–214

    CAS  Google Scholar 

  • Mehle N, Kovač M, Petrovič N, Novak Pompe M, Baebler Š, Krečič-Stres H, Gruden K, Ravnikar M (2004) Spread of potato virus YNTN in potato cultivars (Solanum tuberosum L.) with different levels of sensitivity. Physiol Mol Plant Pathol 64:293–300

    CAS  Google Scholar 

  • Milavec M, Kovač M, Ravnikar M (1999) Photosynthetic pigments in potato plants (Solanum tuberosum L.) cv. Igor after primary infection with Potato virus YNTN. Plant Physiol 39:265–269

    Google Scholar 

  • Milavec M, Ravnikar M, Kovač M (2001) Peroxidases and photosynthetic pigments in susxeptible potato infected with potato virus Y(NTN). Plant Physiol Biochem 39:891–898

    CAS  Google Scholar 

  • Milavec M, Gruden K, Ravnikar M, Kovač M (2008) Peroxidases in the early responses of different potato cultivars to infection by Potato virus YNTN. Plant Pathol 57:861–869

    CAS  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    CAS  Google Scholar 

  • Moravec T, Cerovska N, Boonham N (2003) The detection of recombinant, tuber necrosing isolates of Potato virus Y (PVY(NTN)) using a three-primer PCR based in the coat protein gene. J Virol Methods 109:63–68

    PubMed  CAS  Google Scholar 

  • Nagy PD, Pogany J (2010) Global genomics and proteomics approaches to identify host factors as targets to induce resistance against tomato bushy stunt virus. In: Carr JP, Loebenstein G (eds) Advances in virus research. Elsevier, London. doi:doi:10.1016/S0065-3527(10)76004-8

    Google Scholar 

  • Nie X, Singh RP (2003a) Evolution of North American PVY(NTN) strain Tu 660 from local PVY(N) by mutation rather than recombination. Virus Genes 26:39–47

    PubMed  CAS  Google Scholar 

  • Nie X, Singh RP (2003b) Specific differentiation of recombinant PVY(N:O) and PVY(NTN) isolates by multiplex RT-PCR. J Virol Methods 113:69–77

    PubMed  CAS  Google Scholar 

  • Ohshima K, Sako K, Nakagawa A, Matsuo K, Ogawa T, Shikata E, Sako N (2000) Potato tuber necrotic ringspot disease occurring in Japan: its association with Potato virus Y necrotic strain. Plant Dis 84:1109–1115

    CAS  Google Scholar 

  • Okamoto D, Nielsen S, Albrechtsen M, Borkhardt B (1996) General resistance against potato virus Y introduced into a commercial potato cultivar by genetic transformation with PVYN coat protein gene. Potato Res 39:271–282

    CAS  Google Scholar 

  • Otulak K, Garbaczewska G (2010) Localisation of hydrogen peroxide accumulation during Solanum tuberosum cv. Rywal hypersensitive response to Potato virus Y. Micron 41:327–335

    PubMed  CAS  Google Scholar 

  • Ounouna H, Kerlan C, Lafaye P, Loukili MJ, ElGaaied A (2002) Production of monoclonal antibodies against synthetic peptides of the N-terminal region of Potato virus Y coat protein and their use in PVY strain differentiation. Plant Pathol 51:487–494

    CAS  Google Scholar 

  • Pehu T, Maki-Valkama T, Valkonen J, Koivu K, Lehto K, Pehu E (1995) Potato plants transformed with a potato virus Y P1 gene sequence are resistant to PVYO. Am J Potato Res 72:523–532

    CAS  Google Scholar 

  • Petrovič N, Ravnikar M (1995) Interactions between jasmonic acid and potato virus PVY(ntn) in potato grown in vitro. Aspects Appl Biol 42:337–340

    Google Scholar 

  • Petrovič N, Miersch O, Ravnikar M, Kovač M (1997) Potato virus Y(ntn) alters the distribution and concentration of endogenous jasmonic acid in potato plants grown into viro. Physiol Mol Plant Pathol 50:237–244

    Google Scholar 

  • Piche LM, Singh RP, Nie X, Gudmestad NC (2004) Diversity among Potato virus Y isolates obtained from potatoes grown in the United States. Phytopathology 94:1368–1375

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    PubMed  CAS  Google Scholar 

  • Poljšak-Prijatelj M, Ravnikar M (1992) Detection of PVYN with decoration and gold immuno labeling of thin sections in some secondary infected potato cultivars. Electron Microsc 3:465–466

    Google Scholar 

  • Pompe-Novak M, Wrischer M, Ravnikar M (2001) Ultrastructure of chloroplasts in leaves of potato plants infected by Potato virus YNTN. Phyton 41:215–226

    Google Scholar 

  • Pompe-Novak M, Poljšak-Prijatelj M, Popovič T, Štrukelj B, Ravnikar M (2002) The impact of potato cysteine proteinases in plant growth and development. Physiol Mol Plant Pathol 60:71–78

    CAS  Google Scholar 

  • Pompe-Novak M, Gruden K, Baebler S, Krečič-Stres H, Kovač M, Jongsma M, Ravnikar M (2006) Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physiol Mol Plant Pathol 67:237–247

    Google Scholar 

  • Pruss GJ, Lawrence CB, Bass T, Li QQ, Bowman LH, Vance V (2004) The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology 320:107–120

    PubMed  CAS  Google Scholar 

  • Rajamaki ML, Valkonen JPT (2002) Viral genome-linked protein (VPg) controls accumulation and pholem-loading of a Potyvirus in inoculated potato leaves. Mol Plant Microbe Interact 15:138–149

    PubMed  CAS  Google Scholar 

  • Rakhshandehroo F, Takeshita M, Squires J, Palukaitis P (2009) The influence of RNA-dependent RNA polymerase 1 on potato virus Y infection and on other antiviral response genes. Mol Plant Microbe Interact 10:1312–1318

    Google Scholar 

  • Ravnikar M (2005) Potato virus Y and its interaction with potato. In: Freitag J (ed) ETNA plant genomics and bioinformatics: expression microarrays and beyond—a course book, 1st edn. MPI-MPP, Potsdam-Golm

    Google Scholar 

  • Rigotti S, Gugerli P (2007) Rapid identification of potato virus Y strains by one-step triplex RT-PCR. J Virol Methods 140:90–94

    PubMed  CAS  Google Scholar 

  • Rodriguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C (1997) The coat and cylindrical inclusion proteins of a Potyvirus are associated with connections between plant cells. Virology 236:296–306

    PubMed  CAS  Google Scholar 

  • Rolland M, Glais L, Kerlan C, Jacquot E (2008) A multiple single nucleotide polymorphisms interrogation assay for reliable Potato virus Y group and variant characterization. J Virol Methods 147:108–117

    PubMed  CAS  Google Scholar 

  • Rosner A, Maslenin L (2001) Differentiating PVYNTN from PVYN by annealing to reference RNA transcripts. J Virol Methods 97:125–131

    PubMed  CAS  Google Scholar 

  • Rotter A, Usadel B, Baebler Š, Stitt M, Gruden K (2007) Adaptation of the MapMan ontology to biotic stress responses: application in solanaceous species. Plant Methods 3. doi:10.1186/1746-4811-3-10

  • Rotter A, Hren M, Baebler Š, Blejec A, Gruden K (2008) Finding differentially expressed genes in two-channel DNA microarray datasets: how to increase reliability of data preprocessing. Omics 12:171–182

    PubMed  CAS  Google Scholar 

  • Scholthof KB (2007) The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5:152–156

    PubMed  CAS  Google Scholar 

  • Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2012) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Google Scholar 

  • Schubert J, Fomitcheva V, Sztangret-Wisniewska J (2007) Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. J Virol Methods 140:66–74

    PubMed  CAS  Google Scholar 

  • Shand K, Theodoropoulos C, Stenzel D, Dale JL, Harrison MD (2009) Expression of Potato virus Y cytoplasmic inclusion protein in tobacco results in disorganization of parenchyma cells, distortion of epidermal cells, and induces mitochondrial and chloroplast abnormalities, formation of membrane whorls and atypical lipid accumulation. Micron 40:730–736

    PubMed  CAS  Google Scholar 

  • Simon C, Langlois-Meurinne M, Bellvert F, Garmier M, Didierlaurent L, Massoud K, Chaouch S, Marie A, Bodo B, Kauffmann S, Noctor G, Saindrenan P (2010) The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. J Exp Bot 61:3355–3370

    PubMed  CAS  Google Scholar 

  • Singh DP, Moore CA, Gilliland A, Carr JP (2004) Activation of multiple antiviral defence mechanisms by salicylic acid. Mol Plant Pathol 5:57–63

    PubMed  CAS  Google Scholar 

  • Singh RP, Valkonen JPT, Gray SM, Boonham N, Jones RAC, Kerlan C, Schubert J (2008) Discussion paper: the naming of Potato virus Y strains infecting potato. Arch Virol 153:1–13

    PubMed  CAS  Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001a) A review of host major-gene resistance to potato viruses X, Y, A and V in potato: genes, genetics and mapped locations. Heredity 86:8–16

    PubMed  CAS  Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001b) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17–35

    PubMed  CAS  Google Scholar 

  • Stanič Racman D, McGeachy K, Reavy B, Štrukelj B, Žel J, Barker H (2001) Strong resistance to potato tuber necrotic ringspot disease in potato induced by transformation with coat protein gene sequences from an NTN isolate of Potato virus Y. Ann Appl Biol 139:269–275

    Google Scholar 

  • Szajko K, Chrzanowska M, Witek K, Strzelczyk-Zyta D, Zagorska H, Gebhardt C, Hennig J, Marczewski W (2008) The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theor Appl Genet 116:297–303

    PubMed  CAS  Google Scholar 

  • Szemes M, Klerks MM, van den Heuvel JFJM, Schoen CD (2002) Development of a multiplex AmpliDet RNA assay for simultaneous detection and typing of potato virus Y isolates. J Virol Methods 100:83–96

    PubMed  CAS  Google Scholar 

  • Tacke E, Salamini F, Rohde W (1996) Genetic engineering of potato for broad-spectrum protection against virus infection. Nat Biotechnol 14:1597–1601

    PubMed  CAS  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    PubMed  CAS  Google Scholar 

  • Torrance L, Andreev IA, Gabrenaite-Verhovskaya R, Cowan G, Makinen K, Taliansky ME (2006) An unusual structure at one end of potato potyvirus particles. J Mol Biol 357:1–8

    PubMed  CAS  Google Scholar 

  • Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    PubMed  CAS  Google Scholar 

  • Valkonen PTJ (1994) Natural genes and mechanisms for resistance to viruses in cultivated and wild potato species (Solanum spp.). Plant Breed 112:1–16

    Google Scholar 

  • van Dijk JP, Cankar K, Scheffer SJ, Beenen HG, Shepherd LV, Stewart D, Davies HV, Wilkockson SJ, Leifert C, Gruden K, Kok EJ (2009) Transcriptome analysis of potato tubers-effects of different agricultural practices. J Agric Food Chem 57:1612–1623

    PubMed  Google Scholar 

  • Vuorinen AL, Gammerlgard E, Auvien P, Somervuo P, Dere S, Valkonen JPT (2010) Factors underpinning the responsiveness and higher levels of virus resistance realised in potato genotypes carrying virus-specific R genes. Ann Appl Biol 157:229–241

    CAS  Google Scholar 

  • Wan J, Dunning M, Bent A (2002) Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct Integr Genomics 2:259–273

    PubMed  CAS  Google Scholar 

  • Ward ER, Payne GB, Moyer MB, Williams SC, Dincher SS, Sharkey KC, Beck JJ, Taylor HT, Ahl-Goy P, Meins F Jr, Ryals JA (1991) Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol 96:390–397

    PubMed  CAS  Google Scholar 

  • Weilguny H, Singh RP (1998) Separation of Slovenian isolates of PVYNTN from the North American isolates of PVYN by a 3-primer PCR. J Virol Methods 71:57–68

    PubMed  CAS  Google Scholar 

  • Yambao ML, Masuta C, Nakahara K, Uyeda I (2003) The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg-HCPro and VPg-VPg interactions. J Gen Virol 84:2861–2869

    PubMed  CAS  Google Scholar 

  • Yu DQ, Liu YD, Fan BF, Klessig DF, Chen ZX (1997) Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol 115:343–349

    PubMed  CAS  Google Scholar 

  • Zhou YH, Peng YH, Lei JL, Zou LY, Zheng JH, Yu JQ (2004) Effects of Potato virus YNTN infection on gas exchange and photosystem 2 function in leaves of Solanum tuberosum L. Photosynthetica 42:417–423

    CAS  Google Scholar 

Download references

Acknowledgements

We thank prof. dr. Maja Kovač, doc. Dr. Maruša Pompe Novak, and prof. Dr. Kristina Gruden for critical reading and comments and to dr. Magda Tušek Žnidarič for EM pictures. We thank Dr. Roger Pain for language revision. The work was supported by the Slovenian Research Agency (project nos. Z-4133 and L1-2278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polona Kogovšek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kogovšek, P., Ravnikar, M. (2013). Physiology of the Potato–Potato Virus Y Interaction. In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_3

Download citation

Publish with us

Policies and ethics