Skip to main content

Understanding Information Processes at the Proteomics Level

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

Abstract

All living organisms are composed of proteins. Proteins are large, complex molecules made of long chains of amino acids. Twenty different amino acids are usually found in proteins. Proteins are produced on protein-synthesizing machinery directed by codons made of three deoxyribonucleic acid (DNA) bases. DNA is an information storage macromolecule. With the fast advancement of DNA sequencing technology, more and more genomes have been sequenced. Sequence analysis of this exploding genomic information has revealed a lot of novel genes for which molecular and/or biological functions are to be determined. The huge genomic information stored in DNA and genes is stationary and heritable. At cellular level, genomic information flows selectively from DNA to messenger RNA (mRNA) through transcription and from mRNA to proteins through translation for biological functions, such as response to changes in the environment. Different large-scale, high-throughput studies have been performed to investigate the information flow, e.g., transcriptomic profiling using microarray or RNAseq technologies. As a complementary approach to genomics and transcriptomics, proteomics has been fast developing to investigate gene expression at protein levels including quantitative changes, posttranslational modifications, and interactions with other molecules. These protein-level events represent a global view of information processing at the proteomics level. In this chapter, we focus on the description of technological and biological aspects of the information flow from the static ge nome to the dynamic proteome through gene transcription, protein translation, posttranslational modification, and protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-DE:

one-dimensional electrophoresis

2-D-DIGE:

two-dimensional fluorescence difference gel electrophoresis

2-D:

two-dimensional

2-DE:

two-dimensional electrophoresis

3-D:

three-dimensional

AD:

activating domain

ATP:

adenosine triphosphate

BD:

binding domain

CID:

collision-induced dissociation

CTP:

cytidine triphosphate

DE:

differential evolution

DIGE:

difference in gel electrophoresis

DNA:

deoxyribonucleic acid

ECD:

electron-capture dissociation

EF-G:

elongation factor G

EF:

elongation factor

ER:

endoplasmic reticulum

ESI:

electrospray ionization

ETD:

electron-transfer dissociation

FT-ICR:

Fourier-transform ion cyclotron resonance

FT:

Fourier transform

GDP:

guanosine diphosphate

GTP:

guanosine triphosphate

HILIC:

hydrophilic interaction chromatography

HPLC:

high-performance liquid chromatography

ICAT:

isotope-coded affinity tag

IEF:

isoelectric focusing

IEX:

ion exchange

IF:

initiation factor

IMAC:

ion-affinity chromatography

IPG:

immobilized pH gradient

LC-MS:

liquid chromatography-mass spectrometry

LC:

liquid chromatography

LTQ:

linear ion trap

MALDI:

matrix assisted laser desorption/ionization

MOC:

metal oxide chromatography

MS/MS:

tandem mass spectrometry

MS:

mass spectrometry

NHS:

N-hydroxysuccinimidyl

NanoESI:

nanoelectrospray ionization

PAGE:

polyacrylamide gel electrophoresis

PNGase F:

N-glycosidase F

PTM:

posttranslational modification

QTOF:

quadrupole TOF

QTRAP:

quadrupole ion-trap

RF:

releasing factor

RNA:

ribonucleic acid

RNAseq:

next-gen sequencing

RP:

reversed-phase

SCX:

strong cation exchange

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

SILAC:

stable-isotope labeling with amino acids in cell culture

TAP:

tandem affinity purification

TOF-TOF:

tandem time-of-flight

TOF:

time-of-flight

UTP:

uridine triphosphate

dsDNA:

double-strand DNA

iTRAQ:

isobaric tags for relative and absolute quantitation

mRNA:

messenger RNA

pI:

isoelectric point

tRNA:

transfer RNA

References

  1. P.C. Turner, A.G. Mclennan, A.D. Bates, M.R.H. White: Instant Notes in Molecular Biology (Bios Scientific, Milton Park 1997)

    Google Scholar 

  2. G.B. Smejkal, A. Lazareu: Separation Methods in Proteomics (CRC, Boca Raton 2006)

    Google Scholar 

  3. D.S. Sem: Spectral Techniques in Proteomics (CRC, CRC, Boca Raton 2007)

    Book  Google Scholar 

  4. G. Marko-Varga: Proteomics and Peptidomics New Technology Platforms Elucidating Biology, Comprehensive Analytical Chemistry, Vol. 46 (Elsevier, Amsterdam 2005)

    Google Scholar 

  5. R. Aebersold, M. Mann: Mass spectrometry-based proteomics, Nature 422, 198–207 (2003)

    Article  Google Scholar 

  6. S. Chen, A.C. Harmon: Advances in plant proteomics, Proteomics 6, 5504–5516 (2006)

    Article  Google Scholar 

  7. Y. Wang, H.Y. Li, S. Chen: Advances in quantitative proteomics, Front. Biol. 5, 195–203 (2010)

    Article  Google Scholar 

  8. M. Krüger, M. Moser, S. Ussar, I. Thievessen, C.A. Luber, F. Forner, S. Schmidt, S. Zanivan, R. Fässler, M. Mann: SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function, Cell 134, 353–364 (2008)

    Article  Google Scholar 

  9. ABRF Delta Mass: A database of protein post translational modifications, available online at http://www.abrf.org/index.cfm/dm.home

  10. H. Kosako, K. Nagano: Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways, Expert Rev. Proteomics 8, 81–94 (2011)

    Article  Google Scholar 

  11. A. Kausaite, A. Ramanaviciene, V. Mostovojus, A. Ramanavicius: Surface plasma resonance and its application to biomedical research, Medicina 43, 355–365 (2007)

    Google Scholar 

  12. J. Li, A. Schantz, M. Schwegier, G. Shankar: Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by octet biolayer interferometry, J. Pharm. Biomed. Anal. 54, 286–294 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaojun Dai or Sixue Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Dai, S., Chen, S. (2014). Understanding Information Processes at the Proteomics Level. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics