Skip to main content

Abiotic Stresses: Challenges for Plant Breeding in the Coming Decades

  • Chapter
  • First Online:
Plant Breeding for Abiotic Stress Tolerance

Abstract

Modern agriculture has been providing food, feed, fiber and more recently biofuel to meet the World´s demand. One of the bases of this modern agriculture is the improved cultivars, which are much higher yielder than ancient ones. The scientific literature documents the significant contribution of plant breeding to agriculture and finally food production worldwide. Now-a-days, agriculture has new and huge challenges, due to population growth, the pressure on agriculture liability on the environmental conservation, and climate change. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. So, in this book, experts on plant physiology and on plant breeding presents the most recent advances and discoveries applied to abiotic stresses, discussing the new physiological concepts, breeding methods, and modern molecular biological approaches to develop improved cultivars tolerant to most sorts of abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warning world? Plant Phisiology 154:526–530

    Article  CAS  Google Scholar 

  • Alexandratos N (2006) World Agriculture: towards 2030/50. interim report. An FAO perspective. Rome: FAO

    Google Scholar 

  • Assad ED, Pelegrino GO (2007) O clima e a potência ambiental. Agroanalysis 27(9):E3–E5

    Google Scholar 

  • Assad ED, Pinto HS (2008) Aquecimento global e a nova geografia da produção agrícola no Brasil. São Paulo, Embrapa/Unicamp, p 84

    Google Scholar 

  • Beddington I (2010) Food security: Contributions from science to a new and greener revolution. Philosophical Transcections Of The Royal Society 365:61–71

    Article  Google Scholar 

  • Borém A, Almeida GD (2011) Plantas geneticamente modificadas: desafios e oportunidades para regiões tropicais. Suprema, Visconde de Rio Branco

    Google Scholar 

  • Borém A, Rios SA (2011) Milho biofortificado. Suprema, Visconde de Rio Branco

    Google Scholar 

  • Boyer JS (1982) Plant productive and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma J (2009) The resource outlook to 2050: by how much do land. water and crop yields need to increase by 2050? Expert Meeting on How to Feed the World in 2050. Rome. FAO

    Google Scholar 

  • Buntgen U et al (2011). 2500 Years of European climate variability and human susceptibility. Science Express. 13 Jan, 2011. pp 1–4.

    Google Scholar 

  • Chris S, Briscoe J (2001) Genetic engineering and water. Science 292: p 2217

    Google Scholar 

  • Christensen TR, Johansson T, Olsrud M, Strom L, Lindroth A, Mastepanov M, Malmer N, Friborg T, Crill P and Callaghat TV (2007) A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Phil Trans R Soc A 365:1643–1656

    Article  PubMed  CAS  Google Scholar 

  • Costa CP (1974) Cenoura Nacional. em germoplasma para as condições de dias curtos nas regiões tropicais e sub-tropicais. Relatório científico do Departamento de Genética. ESALQ/USP. N°8. pp 50–53

    Google Scholar 

  • Demeke M, Pangrazio G, Maetz M (2008) Country responses to the food security crisis: Nature and preliminary implications of the policies pursued. FAO, Rome

    Google Scholar 

  • Denardi F, Camilo AP (1998) Estratégia do Melhoramento Genético da Macieira na EPAGRI S. A. Santa Catarina. Anais do II Simpósio sobre atualizações em Genética e Melhoramento de Plantas. UFLA. pp 123–132

    Google Scholar 

  • Duvick D, Cassman KG (1999) Post-green revolution trends in yield potential of temperature maize in the North-Central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M. Long Term selection in a commercial hybrid maize breeding program. In: Janick. I. Plant Breeding Reviews. Part. 2 24:109–152

    Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana JF and Schmidhuber J (2007) Food, fiber and forest products. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, pp 273–313

    Google Scholar 

  • Evans L (1998) Feeding the Ten Billion: Plants and Population Growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Evans LT, Fisher RA (1999) Yield potential: Its definition measurement and significance. Crop Sci 39:1544–1551

    Article  Google Scholar 

  • FAO (2009) How to feed the world in 2050. FAO, Rome

    Google Scholar 

  • FAO (2010) The state of food insecurity in the world 2010. FAO, Rome

    Google Scholar 

  • Fuchs D, Kalfagianni J, Artenson M (2009). Retail power. Private standards and sustainability in the Global Food System. In: Clapp J, Fuchs D (eds) Corporate power in global agrifood governance. MIT Press, Cambridge

    Google Scholar 

  • Garnett T (2008) Cooking up a storm: Food. greenhouse gas emissions and our changing climate. Guildford: food climate research network. Centre for Environmental Strategy. University of Surrey

    Google Scholar 

  • IPCC (2007) Climate change—the physical sciences basis: summary for policymakers. Intergovernmental Panel on Climate Change, Genebra p 18

    Google Scholar 

  • Kucharik CJ, Serbin SP (2008) Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ Res Lett 3:034003 (p 10)

    Google Scholar 

  • Lobell D, Burke MB, Tebaldi C, Mastrawdrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate chance adaptation needs for food security in 2030. Science 319:607–610

    Article  PubMed  CAS  Google Scholar 

  • Mitchell R, Kenneth PV, and Gautam S (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels Bioprod Bioref 2:530–539

    Article  Google Scholar 

  • Ort D, Long, SP (2003) Converting solar energy into crop production. In: Chrispeels MJ, Sadava. D. E. Plants genes and crop biotechnology. 2. ed. Londres: Jones and Bartlett Publishers International. pp 240-269

    Google Scholar 

  • Paterniani E (1990) Breeding in the tropics. Critical. Reviews in Plant Science. 9(2):125–154

    Article  Google Scholar 

  • Peng S, Cassman KG, Virmani SS, Sheehy I, Khush GS (1999) Yield potential trends of tropical rice since the release of IR 8 and the challenge of increasing rice yield potential. Crop Sci 39:1552–1559

    Article  Google Scholar 

  • Plett A, Safwat G, Gilliham M, Møller IS, Roy SJ, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1. plos One 5:e12571

    Article  PubMed  Google Scholar 

  • Quam M (2009) The economics of genetically modified crops. Annual Rev Resour Econ 1:665–694

    Article  Google Scholar 

  • Ramalho MAP, Silva GS, Dias LAS (2009) Genetic plant improvement and climate changes. Crop Breeding and Applied Biotechnology 9:189–195

    Google Scholar 

  • Rao IM, Cramer GR (2003) Plant nutrition and crop improvement in adverse soil conditions In: Chrispeels MJ, Sadava DE. Plants genes and crop biotechnology. 2. ed. Londres: Jones and Bartlett Publishers International. pp 270–303

    Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential. A genetic and physiological perspective. Crop Sci 39:1560–1570

    Article  Google Scholar 

  • Tollenaar M, Lee EA (2002) Yield potential. yield stability and stress tolerance in maize. Field Crops Res 75:161–169

    Article  Google Scholar 

  • Tollenaar M, Wu I (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604

    Article  Google Scholar 

  • UK Government (2011). Foresight project on global food and farming futures: trends in food demand and production. p 39

    Google Scholar 

  • USDA (2009) USDA agricultural projections to 2018. Washington, USDA

    Google Scholar 

  • Vencovsky R, Ramalho MAP (2006) Contribuições do melhoramento genético no Brasil. In: Paterniani E (Org.). Ciência. agricultura e sociedade. 1.ed. Brasília: EMBRAPA. pp 41–74

    Google Scholar 

  • Vieira C (1976) Feijão. Viçosa, Impressa UFV p 129

    Google Scholar 

  • Washid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wright J (2010) Feeding nine billion in a low emissions economy—Simple. Though Not Easy. London, A review for the Overseas Development Institute

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aluízio Borém .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borém, A., Ramalho, M.A.P., Fritsche-Neto, R. (2012). Abiotic Stresses: Challenges for Plant Breeding in the Coming Decades. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_1

Download citation

Publish with us

Policies and ethics