Skip to main content

Mouse and Human Pluripotent Stem Cells and the Means of Their Myogenic Differentiation

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, are an important tool in the studies focusing at the differentiation of various cell types, including skeletal myoblasts. They are also considered as a source of the cells that due to their pluripotent character and availability could be turned into any required tissue and then used in future in regenerative medicine. However, the methods of the derivation of some of cell types from pluripotent cells still need to be perfected. This chapter summarizes the history and current advancements in the derivation and testing of pluripotent stem cells-derived skeletal myoblasts. It focuses at the in vitro methods allowing the differentiation of stem cells grown in monolayer or propagated as embryoid bodies, and also at in vivo tests allowing the verification of the functionality of obtained skeletal myoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Niwa H, Iwase K, Takiguchi M, Mori M, Abe SI, Yamamura KI (1996) Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp Cell Res 229:27–34

    PubMed  CAS  Google Scholar 

  • Armour C, Garson K, McBurney MW (1999) Cell-cell interaction modulates myod-induced skeletal myogenesis of pluripotent p19 cells in vitro. Exp Cell Res 251:79–91

    PubMed  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on sox2 function. Genes Dev 17:126–140

    PubMed  CAS  Google Scholar 

  • Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13:642–648

    PubMed  CAS  Google Scholar 

  • Berkes CA, Tapscott SJ (2005) Myod and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    PubMed  CAS  Google Scholar 

  • Bhagavati S, Song X, Siddiqui MA (2007) Rnai inhibition of pax3/7 expression leads to markedly decreased expression of muscle determination genes. Mol Cell Biochem 302:257–262

    PubMed  CAS  Google Scholar 

  • Bhagavati S, Xu W (2005) Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem Biophys Res Commun 333:644–649

    PubMed  CAS  Google Scholar 

  • Bloch W, Forsberg E, Lentini S, Brakebusch C, Martin K, Krell HW, Weidle UH, Addicks K, Fassler R (1997) Beta 1 integrin is essential for teratoma growth and angiogenesis. J Cell Biol 139:265–278

    PubMed  CAS  Google Scholar 

  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A (2011) Reference maps of human es and ips cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452

    PubMed  CAS  Google Scholar 

  • Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189–201

    PubMed  CAS  Google Scholar 

  • Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, Soligo D, Bosari S, Silani V, Deliliers GL, Rebulla P, Lazzari L (2006) Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 16:329–336

    PubMed  CAS  Google Scholar 

  • Bourillot PY, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N, Savatier P (2009) Novel stat3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with nanog. Stem Cells 27:1760–1771

    PubMed  CAS  Google Scholar 

  • Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    PubMed  CAS  Google Scholar 

  • Brinster RL (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140:1049–1056

    PubMed  CAS  Google Scholar 

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    PubMed  CAS  Google Scholar 

  • Burdon T, Stracey C, Chambers I, Nichols J, Smith A (1999) Suppression of shp-2 and erk signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210:30–43

    PubMed  CAS  Google Scholar 

  • Cameron CM, Hu WS, Kaufman DS (2006) Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 94:938–948

    PubMed  CAS  Google Scholar 

  • Cao F, van der Bogt KE, Sadrzadeh A, Xie X, Sheikh AY, Wang H, Connolly AJ, Robbins RC, Wu JC (2007) Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev 16:883–891

    PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    PubMed  CAS  Google Scholar 

  • Chan J, Waddington SN, O'Donoghue K, Kurata H, Guillot PV, Gotherstrom C, Themis M, Morgan JE, Fisk NM (2007) Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 25:875–884

    PubMed  CAS  Google Scholar 

  • Chang H, Yoshimoto M, Umeda K, Iwasa T, Mizuno Y, Fukada S, Yamamoto H, Motohashi N, Miyagoe-Suzuki Y, Takeda S, Heike T, Nakahata T (2009) Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J 23:1907–1919

    PubMed  CAS  Google Scholar 

  • Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL (2004) Improved generation of c57bl/6j mouse embryonic stem cells in a defined serum-free media. Genesis 39:100–104

    PubMed  Google Scholar 

  • Ciemerych MA, Archacka K, Grabowska I, Przewozniak M (2011) Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 53:473–527

    PubMed  CAS  Google Scholar 

  • Ciemerych MA, Archacka K, Polanski Z, Kubiak JZ (2009) Cell cycle modifications during oocyte maturation and early development of lt/sv mice: normal development or teratoma formation? In: Kubiak JZ, Ciemerych MA, Richard-Parpaillon L (eds) Cell cycle and development in vertebrates. Research Signpost, Kerala, pp 181–202

    Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    PubMed  CAS  Google Scholar 

  • Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364–366

    PubMed  CAS  Google Scholar 

  • Constantinides PG, Taylor SM, Jones PA (1978) Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol 66:57–71

    PubMed  CAS  Google Scholar 

  • Cooke MJ, Stojkovic M, Przyborski SA (2006) Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev 15:254–259

    PubMed  CAS  Google Scholar 

  • Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356

    PubMed  CAS  Google Scholar 

  • Craft AM, Krisky DM, Wechuck JB, Lobenhofer EK, Jiang Y, Wolfe DP, Glorioso JC (2008) Herpes simplex virus-mediated expression of pax3 and myod in embryoid bodies results in lineage-related alterations in gene expression profiles. Stem Cells 26:3119–3129

    PubMed  CAS  Google Scholar 

  • Czyz J, Wiese C, Rolletschek A, Blyszczuk P, Cross M, Wobus AM (2003) Potential of embryonic and adult stem cells in vitro. Biol Chem 384:1391–1409

    PubMed  CAS  Google Scholar 

  • Czyz J, Wobus A (2001) Embryonic stem cell differentiation: the role of extracellular factors. Differentiation 68:167–174

    PubMed  CAS  Google Scholar 

  • Daheron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J, Daley GQ (2004) Lif/stat3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770–778

    PubMed  CAS  Google Scholar 

  • Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 78:442–453

    PubMed  CAS  Google Scholar 

  • Darabi R, Baik J, Clee M, Kyba M, Tupler R, Perlingeiro RC (2009) Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Exp Neurol 220:212–216

    PubMed  CAS  Google Scholar 

  • Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE, Kyba M, Perlingeiro RC (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14:134–143

    PubMed  CAS  Google Scholar 

  • Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, Perlingeiro RC (2011a) Functional myogenic engraftment from mouse ips cells. Stem Cell Rev 7:948–957

    PubMed  Google Scholar 

  • Darabi R, Santos FN, Filareto A, Pan W, Koene R, Rudnicki MA, Kyba M, Perlingeiro RC (2011b) Assessment of the myogenic stem cell compartment following transplantation of pax3/pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29:777–790

    PubMed  CAS  Google Scholar 

  • De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    PubMed  Google Scholar 

  • Dekel I, Magal Y, Pearson-White S, Emerson CP, Shani M (1992) Conditional conversion of es cells to skeletal muscle by an exogenous myod1 gene. New Biol 4:217–224

    PubMed  CAS  Google Scholar 

  • Demers SP, Desmarais JA, Vincent P, Smith LC (2011) Rat blastocyst-derived stem cells are precursors of embryonic and extraembryonic lineages. Biol Reprod 84:1128–1138

    PubMed  CAS  Google Scholar 

  • Desbaillets I, Ziegler U, Groscurth P, Gassmann M (2000) Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physiol 85:645–651

    PubMed  CAS  Google Scholar 

  • Di Padova M, Caretti G, Zhao P, Hoffman EP, Sartorelli V (2007) Myod acetylation influences temporal patterns of skeletal muscle gene expression. J Biol Chem 282:37650–37659

    PubMed  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    PubMed  CAS  Google Scholar 

  • Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of mhc proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869

    PubMed  CAS  Google Scholar 

  • Ducibella T, Anderson D, Aalberg J, DeWolf WC (1982) Cell surface polarization, tight junctions, and eccentric inner cells characterize human teratocarcinoma embryoid bodies. Dev Biol 94:197–205

    PubMed  CAS  Google Scholar 

  • Edwards MK, Harris JF, McBurney MW (1983) Induced muscle differentiation in an embryonal carcinoma cell line. Mol Cell Biol 3:2280–2286

    PubMed  CAS  Google Scholar 

  • Edwards MK, McBurney MW (1983) The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev Biol 98:187–191

    PubMed  CAS  Google Scholar 

  • Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214

    PubMed  CAS  Google Scholar 

  • Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12:680–686

    PubMed  CAS  Google Scholar 

  • Evans MJ (1972) The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol 28:163–176

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  • Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106:10993–10998

    PubMed  CAS  Google Scholar 

  • Ezekiel UR, Muthuchamy M, Ryerse JS, Heuertz RM (2007) Single embryoid body formation in a multi-well plate. Electron J Biotechnol 10:328–335

    Google Scholar 

  • Fawcett DW (1950) Bilateral ovarian teratomas in a mouse. Cancer Res 10:705–707

    PubMed  CAS  Google Scholar 

  • Fekete E, Ferrigno MA (1952) Studies on a transplantable teratoma of the mouse. Cancer Res 12:438–440

    PubMed  CAS  Google Scholar 

  • Fong CY, Richards M, Manasi N, Biswas A, Bongso A (2007) Comparative growth behaviour and characterization of stem cells from human wharton’s jelly. Reprod Biomed Online 15:708–718

    PubMed  CAS  Google Scholar 

  • Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296:245–255

    PubMed  CAS  Google Scholar 

  • Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M, Mora M, De Angelis MG, Fiocco R, Cossu G, Vescovi AL (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991

    PubMed  CAS  Google Scholar 

  • Gardner RL (1968) Mouse chimeras obtained by the injection of cells into the blastocyst. Nature 220:596–597

    PubMed  CAS  Google Scholar 

  • Gertow K, Wolbank S, Rozell B, Sugars R, Andang M, Parish CL, Imreh MP, Wendel M, Ahrlund-Richter L (2004) Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 13:421–435

    PubMed  Google Scholar 

  • Gianakopoulos PJ, Mehta V, Voronova A, Cao Y, Yao Z, Coutu J, Wang X, Waddington MS, Tapscott SJ, Skerjanc IS (2011) Myod directly up-regulates premyogenic mesoderm factors during induction of skeletal myogenesis in stem cells. J Biol Chem 286:2517–2525

    PubMed  CAS  Google Scholar 

  • Goyenvalle A, Seto JT, Davies KE, Chamberlain J (2011) Therapeutic approaches to muscular dystrophy. Hum Mol Genet 20:R69–78

    PubMed  CAS  Google Scholar 

  • Grivennikov IA (2008) Embryonic stem cells and the problem of directed differentiation. Biochemistry (Mosc) 73:1438–1452

    CAS  Google Scholar 

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    PubMed  CAS  Google Scholar 

  • Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570

    PubMed  Google Scholar 

  • Hassani SN, Totonchi M, Farrokhi A, Taei A, Larijani MR, Gourabi H, Baharvand H (2012) Simultaneous suppression of tgf-beta and erk signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem Cell Rev 8:472–481

    Google Scholar 

  • Heins N, Englund MC, Sjoblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22:367–376

    PubMed  Google Scholar 

  • Hirsch E, Lohikangas L, Gullberg D, Johansson S, Fassler R (1998) Mouse myoblasts can fuse and form a normal sarcomere in the absence of beta1 integrin expression. J Cell Sci 111(Pt 16):2397–2409

    PubMed  CAS  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    PubMed  CAS  Google Scholar 

  • Horsley V, Pavlath GK (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176:67–78

    PubMed  Google Scholar 

  • Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in es cells and cloned mice. Science 293:95–97

    PubMed  CAS  Google Scholar 

  • Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT, Rose-John S, Hayek A (2004) Maintenance of pluripotency in human embryonic stem cells is stat3 independent. Stem Cells 22:522–530

    PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    PubMed  CAS  Google Scholar 

  • Jackson EB, Brues AM (1941) Studies on transplantable embryoma of the mouse. Cancer Res 1:494–498

    CAS  Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    PubMed  CAS  Google Scholar 

  • Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91:11797–11801

    PubMed  CAS  Google Scholar 

  • Kahan BW, Ephrussi B (1970) Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst 44:1015–1036

    PubMed  CAS  Google Scholar 

  • Kamochi H, Kurokawa MS, Yoshikawa H, Ueda Y, Masuda C, Takada E, Watanabe K, Sakakibara M, Natuki Y, Kimura K, Beppu M, Aoki H, Suzuki N (2006) Transplantation of myocyte precursors derived from embryonic stem cells transfected with igfii gene in a mouse model of muscle injury. Transplantation 82:516–526

    PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012

    PubMed  CAS  Google Scholar 

  • Karbanova J, Mokry J (2002) Histological and histochemical analysis of embryoid bodies. Acta Histochem 104:361–365

    PubMed  Google Scholar 

  • Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K, Yoshino T, Kazuki K, Ishihara C, Takehara S, Higaki K, Nakagawa M, Takahashi K, Yamanaka S, Oshimura M (2010) Complete genetic correction of ips cells from duchenne muscular dystrophy. Mol Ther 18:386–393

    PubMed  CAS  Google Scholar 

  • Kim C, Lee IH, Lee K, Ryu SS, Lee SH, Lee KJ, Lee J, Kang JY, Kim TS (2007) Multi-well chip for forming a uniform embryoid body in a tiny droplet with mouse embryonic stem cells. Biosci Biotechnol Biochem 71:2985–2991

    PubMed  CAS  Google Scholar 

  • Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S, Ishitsuka K, Ocio EM, Chauhan D, Anderson KC (2007) 5-azacytidine, a DNA methyltransferase inhibitor, induces atr-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 6:1718–1727

    PubMed  CAS  Google Scholar 

  • Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    PubMed  CAS  Google Scholar 

  • Koivisto H, Hyvarinen M, Stromberg AM, Inzunza J, Matilainen E, Mikkola M, Hovatta O, Teerijoki H (2004) Cultures of human embryonic stem cells: Serum replacement medium or serum-containing media and the effect of basic fibroblast growth factor. Reprod Biomed Online 9:330–337

    PubMed  CAS  Google Scholar 

  • Konieczny SF, Emerson CP Jr (1984) 5-azacytidine induction of stable mesodermal stem cell lineages from 10 t1/2 cells: evidence for regulatory genes controlling determination. Cell 38:791–800

    PubMed  CAS  Google Scholar 

  • Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) Fgf stimulation of the erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902

    PubMed  CAS  Google Scholar 

  • Kurosawa H, Imamura T, Koike M, Sasaki K, Amano Y (2003) A simple method for forming embryoid body from mouse embryonic stem cells. J Biosci Bioeng 96:409–411

    PubMed  CAS  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    PubMed  CAS  Google Scholar 

  • Lawrenz B, Schiller H, Willbold E, Ruediger M, Muhs A, Esser S (2004) Highly sensitive biosafety model for stem-cell-derived grafts. Cytotherapy 6:212–222

    PubMed  CAS  Google Scholar 

  • Leahy A, Xiong JW, Kuhnert F, Stuhlmann H (1999) Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 284:67–81

    PubMed  CAS  Google Scholar 

  • Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608–2612

    PubMed  CAS  Google Scholar 

  • Lee KH, Chuang CK, Guo SF, Tu CF (2011) Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev 21:373–383

    PubMed  Google Scholar 

  • Li C, Yang Y, Gu J, Ma Y, Jin Y (2009a) Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts. Cell Res 19:173–186

    PubMed  CAS  Google Scholar 

  • Li C, Yu H, Ma Y, Shi G, Jiang J, Gu J, Yang Y, Jin S, Wei Z, Jiang H, Li J, Jin Y (2009b) Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor. PLoS One 4:e6724

    PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    PubMed  CAS  Google Scholar 

  • Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H (2007) Mek/erk signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75:299–307

    PubMed  CAS  Google Scholar 

  • Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, Bhatia M (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456

    PubMed  CAS  Google Scholar 

  • Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    PubMed  CAS  Google Scholar 

  • Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K, Qu X, Xiang T, Lu D, Chi X, Gao G, Ji W, Ding M, Deng H (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    PubMed  CAS  Google Scholar 

  • Lorthongpanich C, Yang SH, Piotrowska-Nitsche K, Parnpai R, Chan AW (2008) Chemical enhancement in embryo development and stem cell derivation from single blastomeres. Cloning Stem Cells 10:503–512

    PubMed  CAS  Google Scholar 

  • Ma M, Ding S, Lundqvist A, San H, Fang F, Konoplyannikov M, Berry C, Beltran LE, Chen G, Kovacic JC, Boehm M (2010) Major histocompatibility complex-i expression on embryonic stem cell-derived vascular progenitor cells is critical for syngeneic transplant survival. Stem Cells 28:1465–1475

    PubMed  CAS  Google Scholar 

  • Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340–345

    PubMed  CAS  Google Scholar 

  • Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in stockholm. Cell 131:1027–1031

    PubMed  CAS  Google Scholar 

  • Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44:41–50

    PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    PubMed  CAS  Google Scholar 

  • Martin GR, Evans MJ (1974) The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell 2:163–172

    PubMed  CAS  Google Scholar 

  • Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci USA 72:1441–1445

    PubMed  CAS  Google Scholar 

  • McGlynn P, Lloyd RG (2002) Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3:859–870

    PubMed  CAS  Google Scholar 

  • Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181–8188

    PubMed  CAS  Google Scholar 

  • Mikkola M, Olsson C, Palgi J, Ustinov J, Palomaki T, Horelli-Kuitunen N, Knuutila S, Lundin K, Otonkoski T, Tuuri T (2006) Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Dev Biol 6:40

    PubMed  Google Scholar 

  • Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72:3585–3589

    PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and es cells. Cell 113:631–642

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T, Fukada S, Yamamoto H, Yamanaka S, Nakahata T, Heike T (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 24:2245–2253

    PubMed  CAS  Google Scholar 

  • Mochizuki H, Ohnuki Y, Kurosawa H (2011) Effect of glucose concentration during embryoid body (eb) formation from mouse embryonic stem cells on eb growth and cell differentiation. J Biosci Bioeng 111:92–97

    PubMed  CAS  Google Scholar 

  • Morris JE, Potter SW, Buckley PM (1982) Mouse embryos and uterine epithelia show adhesive interactions in culture. J Exp Zool 222:195–198

    PubMed  CAS  Google Scholar 

  • Muntener M, Kagi U, Stevens LC, Walt H (1990) Innervation and maturation of muscular tissue in testicular teratomas in strain 129/sv-ter mice. Virchows Arch B Cell Pathol Incl Mol Pathol 59:223–229

    PubMed  CAS  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    PubMed  CAS  Google Scholar 

  • Musch T, Oz Y, Lyko F, Breiling A (2010) Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors. PLoS One 5:e10726

    PubMed  Google Scholar 

  • Myer A, Olson EN, Klein WH (2001) Myod cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells. Dev Biol 229:340–350

    PubMed  CAS  Google Scholar 

  • Newman AM, Cooper JB (2010) Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7:258–262

    PubMed  CAS  Google Scholar 

  • Ng ES, Davis R, Stanley EG, Elefanty AG (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (apel) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 3:768–776

    PubMed  CAS  Google Scholar 

  • Nichols J, Silva J, Roode M, Smith A (2009) Suppression of erk signalling promotes ground state pluripotency in the mouse embryo. Development 136:3215–3222

    PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the pou transcription factor oct4. Cell 95:379–391

    PubMed  CAS  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of stat3. Genes Dev 12:2048–2060

    PubMed  CAS  Google Scholar 

  • Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of lif signalling pathways maintains pluripotency of mouse es cells. Nature 460:118–122

    PubMed  CAS  Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    PubMed  CAS  Google Scholar 

  • Oakley CS, Welsch MA, Zhai YF, Chang CC, Gould MN, Welsch CW (1993) Comparative abilities of athymic nude mice and severe combined immune deficient (scid) mice to accept transplants of induced rat mammary carcinomas: enhanced transplantation efficiency of those rat mammary carcinomas that have elevated expression of neu oncogene. Int J Cancer 53:1002–1007

    PubMed  CAS  Google Scholar 

  • Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549

    PubMed  CAS  Google Scholar 

  • Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases dnmt3a and dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    PubMed  CAS  Google Scholar 

  • Ooi SK, Wolf D, Hartung O, Agarwal S, Daley GQ, Goff SP, Bestor TH (2010) Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics Chromatin 3:17

    PubMed  Google Scholar 

  • Papaioannou VE, McBurney MW, Gardner RL, Evans MJ (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258:70–73

    PubMed  CAS  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    PubMed  CAS  Google Scholar 

  • Pawlikowski B, Lee L, Zuo J, Kramer RH (2009) Analysis of human muscle stem cells reveals a differentiation-resistant progenitor cell population expressing pax7 capable of self-renewal. Dev Dyn 238:138–149

    PubMed  CAS  Google Scholar 

  • Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by bmp-2 and its antagonist noggin. J Cell Sci 117:1269–1280

    PubMed  CAS  Google Scholar 

  • Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, Chamberlain JS (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4:1251–1258

    PubMed  CAS  Google Scholar 

  • Pierce GB, Dixon FJ Jr (1959) Testicular teratomas. Ii. Teratocarcinoma as an ascitic tumor. Cancer 12:584–589

    PubMed  CAS  Google Scholar 

  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    PubMed  CAS  Google Scholar 

  • Potter SW, Morris JE (1985) Development of mouse embryos in hanging drop culture. Anat Rec 211:48–56

    PubMed  CAS  Google Scholar 

  • Prelle K, Wobus AM, Krebs O, Blum WF, Wolf E (2000) Overexpression of insulin-like growth factor-ii in mouse embryonic stem cells promotes myogenic differentiation. Biochem Biophys Res Commun 277:631–638

    PubMed  CAS  Google Scholar 

  • Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of matrigel. Stem Cells Dev 18:47–54

    PubMed  CAS  Google Scholar 

  • Przyborski SA, Christie VB, Hayman MW, Stewart R, Horrocks GM (2004) Human embryonal carcinoma stem cells: models of embryonic development in humans. Stem Cells Dev 13:400–408

    PubMed  CAS  Google Scholar 

  • Quattrocelli M, Palazzolo G, Floris G, Schoffski P, Anastasia L, Orlacchio A, Vandendriessche T, Chuah MK, Cossu G, Verfaillie C, Sampaolesi M (2011) Intrinsic cell memory reinforces myogenic commitment of pericyte-derived ipscs. J Pathol 223:593–603

    PubMed  CAS  Google Scholar 

  • Rathjen PD, Nichols J, Toth S, Edwards DR, Heath JK, Smith AG (1990) Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev 4:2308–2318

    PubMed  CAS  Google Scholar 

  • Robbins J, Gulick J, Sanchez A, Howles P, Doetschman T (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J Biol Chem 265:11905–11909

    PubMed  CAS  Google Scholar 

  • Rohwedel J, Guan K, Zuschratter W, Jin S, Ahnert-Hilger G, Furst D, Fassler R, Wobus AM (1998) Loss of beta1 integrin function results in a retardation of myogenic, but an acceleration of neuronal, differentiation of embryonic stem cells in vitro. Dev Biol 201:167–184

    PubMed  CAS  Google Scholar 

  • Rohwedel J, Horak V, Hebrok M, Fuchtbauer EM, Wobus AM (1995) M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro. Exp Cell Res 220:92–100

    PubMed  CAS  Google Scholar 

  • Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101

    PubMed  CAS  Google Scholar 

  • Rose O, Rohwedel J, Reinhardt S, Bachmann M, Cramer M, Rotter M, Wobus A, Starzinski-Powitz A (1994) Expression of m-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture. Dev Dyn 201:245–259

    PubMed  CAS  Google Scholar 

  • Rosenthal MD, Wishnow RM, Sato GH (1970) In vitro growth and differetiation of clonal populations of multipotential mouse clls derived from a transplantable testicular teratocarcinoma. J Natl Cancer Inst 44:1001–1014

    PubMed  CAS  Google Scholar 

  • Rossant J, Gardner RL, Alexandre HL (1978) Investigation of the potency of cells from the postimplantation mouse embryo by blastocyst injection: a preliminary report. J Embryol Exp Morphol 48:239–247

    PubMed  CAS  Google Scholar 

  • Sakurai H, Okawa Y, Inami Y, Nishio N, Isobe K (2008) Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 26:1865–1873

    PubMed  CAS  Google Scholar 

  • Sanchez A, Jones WK, Gulick J, Doetschman T, Robbins J (1991) Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. J Biol Chem 266:22419–22426

    PubMed  CAS  Google Scholar 

  • Sasaki E, Hanazawa K, Kurita R, Akatsuka A, Yoshizaki T, Ishii H, Tanioka Y, Ohnishi Y, Suemizu H, Sugawara A, Tamaoki N, Izawa K, Nakazaki Y, Hamada H, Suemori H, Asano S, Nakatsuji N, Okano H, Tani K (2005) Establishment of novel embryonic stem cell lines derived from the common marmoset (callithrix jacchus). Stem Cells 23:1304–1313

    PubMed  CAS  Google Scholar 

  • Schmidt MM, Guan K, Wobus AM (2001) Lithium influences differentiation and tissue-specific gene expression of mouse embryonic stem (es) cells in vitro. Int J Dev Biol 45:421–429

    PubMed  CAS  Google Scholar 

  • Schoonjans L, Kreemers V, Danloy S, Moreadith RW, Laroche Y, Collen D (2003) Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21:90–97

    PubMed  Google Scholar 

  • Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M, Field LJ, Lehmann J, Zweigerdt R (2005) Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 92:920–933

    PubMed  CAS  Google Scholar 

  • Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    PubMed  CAS  Google Scholar 

  • Shani M, Faerman A, Emerson CP, Pearson-White S, Dekel I, Magal Y (1992) The consequences of a constitutive expression of myod1 in es cells and mouse embryos. Symp Soc Exp Biol 46:19–36

    PubMed  CAS  Google Scholar 

  • Shao H, Chen B, Tao M (2009) Skeletal myogenesis by human primordial germ cell-derived progenitors. Biochem Biophys Res Commun 378:750–754

    PubMed  CAS  Google Scholar 

  • Shen MM, Leder P (1992) Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 89:8240–8244

    PubMed  CAS  Google Scholar 

  • Shi D, Reinecke H, Murry CE, Torok-Storb B (2004) Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 104:290–294

    PubMed  CAS  Google Scholar 

  • Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    PubMed  CAS  Google Scholar 

  • Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195–200

    PubMed  CAS  Google Scholar 

  • Solter D, Skreb N, Damjanov I (1970) Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 227:503–504

    PubMed  CAS  Google Scholar 

  • Sorm F, Piskala A, Cihak A, Vesely J (1964) 5-azacytidine, a new, highly effective cancerostatic. Experientia 20:202–203

    PubMed  CAS  Google Scholar 

  • Stavropoulos ME, Mengarelli I, Barberi T (2009) Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Curr Protoc Stem Cell Biol Chapter 1:Unit 1F 8

    Google Scholar 

  • Stevens LC (1960) Embryonic potency of embryoid bodies derived from a transplantable testicular teratoma of the mouse. Dev Biol 2:285–297

    PubMed  CAS  Google Scholar 

  • Stevens LC (1962) Testicular teratomas in fetal mice. J Natl Cancer Inst 28:247–267

    PubMed  CAS  Google Scholar 

  • Stevens LC (1967) The biology of teratomas. Adv Morphog 6:1–31

    PubMed  CAS  Google Scholar 

  • Stevens LC (1968) The development of teratomas from intratesticular grafts of tubal mouse eggs. J Embryol Exp Morphol 20:329–341

    PubMed  CAS  Google Scholar 

  • Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol 21:364–382

    PubMed  CAS  Google Scholar 

  • Stevens LC, Little CC (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 40:1080–1087

    PubMed  CAS  Google Scholar 

  • Stevens LC, Varnum DS (1974) The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 37:369–380

    PubMed  CAS  Google Scholar 

  • Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) Nanog is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716

    PubMed  CAS  Google Scholar 

  • Sundstrom J, Verajnkorva E, Salminen E, Pelliniemi LJ, Pollanen P (1999) Experimental testicular teratoma promotes formation of humoral immune responses in the host testis. J Reprod Immunol 42:107–126

    PubMed  CAS  Google Scholar 

  • Suwinska A, Ciemerych MA (2011) Factors regulating pluripotency and differentiation in early mammalian embryos and embryo-derived stem cells. Vitam Horm 87:1–38

    PubMed  CAS  Google Scholar 

  • Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ, Robbins RC, Wu JC (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17:1023–1029

    PubMed  CAS  Google Scholar 

  • Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–172

    PubMed  Google Scholar 

  • Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266:372–389

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of cpg islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745

    PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10 t1/2 and 3 t3 cells treated with 5-azacytidine. Cell 17:771–779

    PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA (1982) Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 111:187–194

    PubMed  CAS  Google Scholar 

  • Thompson EM, Legouy E, Renard JP (1998) Mouse embryos do not wait for the mbt: chromatin and rna polymerase remodeling in genome activation at the onset of development. Dev Genet 22:31–42

    PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    PubMed  CAS  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (callithrix jacchus) blastocysts. Biol Reprod 55:254–259

    PubMed  CAS  Google Scholar 

  • Tian C, Lu Y, Gilbert R, Karpati G (2008) Differentiation of murine embryonic stem cells in skeletal muscles of mice. Cell Transplant 17:325–335

    PubMed  Google Scholar 

  • Tveit KM, Fodstad O, Brogger A, Olsnes S (1980) Human embryonal carcinoma grown in athymic mice and in vitro. Cancer Res 40:949–953

    PubMed  CAS  Google Scholar 

  • Ueda S, Kawamata M, Teratani T, Shimizu T, Tamai Y, Ogawa H, Hayashi K, Tsuda H, Ochiya T (2008) Establishment of rat embryonic stem cells and making of chimera rats. PLoS One 3:e2800

    PubMed  Google Scholar 

  • Valbuena D, Galan A, Sanchez E, Poo ME, Gomez E, Sanchez-Luengo S, Melguizo D, Garcia A, Ruiz V, Moreno R, Pellicer A, Simon C (2006) Derivation and characterization of three new spanish human embryonic stem cell lines (val -3–4 -5) on human feeder and in serum-free conditions. Reprod Biomed Online 13:875–886

    PubMed  Google Scholar 

  • van den Eijnden-van Raaij AJ, van Achterberg TA, van der Kruijssen CM, Piersma AH, Huylebroeck D, de Laat SW, Mummery CL (1991) Differentiation of aggregated murine p19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific fgf-like factor and inhibited by activin a. Mech Dev 33:157–165

    PubMed  Google Scholar 

  • Virchow R (1863) Die krankhaften geschwülste. Dreissig vorlesungen, gehalten während des wintersemesters 1862–1863. Berlin

    Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    PubMed  CAS  Google Scholar 

  • Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42:162–165

    CAS  Google Scholar 

  • Watanabe S, Hirai H, Asakura Y, Tastad C, Verma M, Keller C, Dutton JR, Asakura A (2011) Myod gene suppression by oct4 is required for reprogramming in myoblasts to produce induced pluripotent stem cells. Stem Cells 29:505–516

    PubMed  CAS  Google Scholar 

  • Weitzer G, Milner DJ, Kim JU, Bradley A, Capetanaki Y (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev Biol 172:422–439

    PubMed  CAS  Google Scholar 

  • Wells DJ, Wells KE, Asante EA, Turner G, Sunada Y, Campbell KP, Walsh FS, Dickson G (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of duchenne muscular dystrophy. Hum Mol Genet 4:1245–1250

    PubMed  CAS  Google Scholar 

  • Wiles MV, Keller G (1991) Multiple hematopoietic lineages develop from embryonic stem (es) cells in culture. Development 111:259–267

    PubMed  CAS  Google Scholar 

  • Wirth M, Inglin B, Romen W, Ackermann R (1983) Human embryonal cell carcinoma in nude mice. Cancer Res 43:5526–5532

    PubMed  CAS  Google Scholar 

  • Wobus A, Rohwedel J, Maltsev V, Hescheler J (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch Dev Biol 204:36–45

    CAS  Google Scholar 

  • Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and ca2+ channel blockers. Differentiation 48:173–182

    PubMed  CAS  Google Scholar 

  • Wyzykowski JC, Winata TI, Mitin N, Taparowsky EJ, Konieczny SF (2002) Identification of novel myod gene targets in proliferating myogenic stem cells. Mol Cell Biol 22:6199–6208

    PubMed  CAS  Google Scholar 

  • Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) Bmp4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) Bmp induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with stat3. Cell 115:281–292

    PubMed  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    PubMed  CAS  Google Scholar 

  • Zheng JK, Wang Y, Karandikar A, Wang Q, Gai H, Liu AL, Peng C, Sheng HZ (2006) Skeletal myogenesis by human embryonic stem cells. Cell Res 16:713–722

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors regret the omission of any relevant literature, which happened either because of the space limitation or oversight. This work was supported by the grant from National Science Center N N303 548139 to IG and N N303 320537 to KA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ciemerych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabowska, I., Archacka, K., Czerwinska, A.M., Krupa, M., Ciemerych, M.A. (2012). Mouse and Human Pluripotent Stem Cells and the Means of Their Myogenic Differentiation. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_18

Download citation

Publish with us

Policies and ethics