Skip to main content

On the Estimation of Solute Transport Parameters for Rivers

  • Chapter
  • First Online:
Experimental and Computational Solutions of Hydraulic Problems

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The modelling of solute transport in rivers is usually based on simulating the physical processes of advection, dispersion and transient storage, which requires the modeller to specify values of corresponding model parameters for the particular river reach under study. In recent years it has become popular to combine a numerical solution scheme of the governing transport equations with a parameter optimisation technique. However, there are several numerical schemes and optimisation techniques to choose from. The chapter addresses a very simple question, namely, do we get the same, or do we get different, parameter values from the application of two independent solute transport models/parameter optimisation techniques to the same data? Results from seven different cases of observed solute transport suggest the latter, which implies that parameter values cannot be transferred between modelling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bencala KE, Walters RA (1983) Simulation of solute transport in a mountain pool-and-rifle stream: a transient storage model. Water Resour Res 19:718–724

    Article  Google Scholar 

  • Bottacin-Busolin A, Marion A, Musner T, Tregnaghi M, Zaramella M (2011) Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model. Adv Water Resour 34:737–746

    Article  Google Scholar 

  • Deng Z-Q, Jung H-S, Ghimire B (2010) Effect of channel size on solute residence time distributions in rivers. Adv Water Resour 33:1118–1127

    Article  Google Scholar 

  • Fischer HB (1967) The mechanics of dispersion in natural streams. J Hydraul Div Proc Am Soc Civ Eng 93:187–216

    Google Scholar 

  • Fischer HB (1968) Dispersion predictions in natural streams. J Sanit Eng Div Proc Am Soc Civ Eng 94:927–943

    Google Scholar 

  • Hart DR (1995) Parameter estimation and stochastic interpretation of the transient storage model for solute transport. Water Resour Res 31:323–328

    Article  Google Scholar 

  • Manson JR, Wallis SG, Hope D (2001) A conservative semi-Lagrangian transport model for rivers with transient storage zones. Water Resour Res 37:3321–3330

    Article  Google Scholar 

  • Mrokowska MM, Osuch M (2011) Assessing validity of the dead zone model to characterize transport of contaminants in the River Wkra. In: Rowinski P (ed) Experimental methods in hydraulic research. Springer-Verlag, Berlin, pp 235–245

    Chapter  Google Scholar 

  • Price KH, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer-Verlag, Berlin

    Google Scholar 

  • Romanowicz RJ, Osuch M, Wallis SG (2013) Modelling of solute transport in rivers under different flow rates: a case study without transient storage. Acta Geophys (In Press)

    Google Scholar 

  • Runkel RL, Broshears RE (1991) One-dimensional transport with inflow and storage (OTIS): a solute transport model for small streams. CADSWES Department of Civil, Environmental and Architectural Engineering, University of Colorado

    Google Scholar 

  • Runkel RL, Chapra SC (1993) An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resour Res 29:211–215

    Article  Google Scholar 

  • Rutherford JC (1994) River mixing. Wiley, Chichester

    Google Scholar 

  • Scott DT, Gooseff MN, Bencala KE, Runkel RL (2003) Automated calibration of a stream solute transport model: implications for interpretation of biogeochemical parameters. J N Am Benthol Soc 22:492–510

    Article  Google Scholar 

  • Seo IW, Cheong TS (2001) Moment-based calculation of parameters for the storage zone model for river dispersion. J Hydrol Eng Am Soc Civ Eng 127:453–465

    Article  Google Scholar 

  • Singh SK, Beck MB (2003) Dispersion coefficient of streams from tracer experiment data. J Environ Eng Proc Am Soc Civ Eng 129:539–546

    Google Scholar 

  • Storn RM, Price KH (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:41–359

    Article  Google Scholar 

  • Taylor GI (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc Lond A 233:446–468

    Google Scholar 

  • Wagener T, Camacho LA, Wheater HS (2002) Dynamic identifiability analysis of the transient storage model for solute transport in rivers. J Hydroinform 4:199–211

    Google Scholar 

  • Wagner BJ, Gorelick SM (1986) A statistical methodology for estimating transport parameters: theory and applications to one-dimensional advective-dispersive systems. Water Resour Res 22:1303–1315

    Article  Google Scholar 

  • Wagner BJ, Harvey JW (1997) Experimental design for estimating parameters of rate-limited mass transfer: analysis of stream tracer studies. Water Resour Res 33:1731–1741

    Article  Google Scholar 

  • Worman A, Wachniew P (2007) Reach scale and evaluation methods as limitations for transient storage properties in streams and rivers. Water Resour Res 43:W10405. doi:10.1029/2006WR005808

    Article  Google Scholar 

  • Yang G, Reinstein LE, Pai S, Xu Z, Carroll DL (1998) A new genetic algorithm technique in optimization of permanent 125-I prostate implants. Med Phys 25:2308–2315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Wallis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallis, S.G., Osuch, M., Manson, J.R., Romanowicz, R., Demars, B.O.L. (2013). On the Estimation of Solute Transport Parameters for Rivers. In: Rowiński, P. (eds) Experimental and Computational Solutions of Hydraulic Problems. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30209-1_30

Download citation

Publish with us

Policies and ethics