Skip to main content

Coral Reef Bacterial Communities

  • Reference work entry
The Prokaryotes

Abstract

Tropical coral reefs form some of the richest ecosystems on Earth. Though representing less than 0.1% of the total ocean surface, coral reefs host approximately 25% of all marine species. Along with their high biodiversity, coral reefs support the livelihood of millions of people around the world through supply of food, resources, and coastal protection, plus their natural beauty attracts tourists that support associated industries. Coral reefs are complex three-dimensional structures, with an array of habitats and environmental niches. They are also one of the most vulnerable ecosystems on our planet, currently under direct threat from human activities including climate change, decreased water quality, and increased nutrient loads. The microbial community is fundamental to the functioning, health, and resilience of these coral reef ecosystems. Understanding how environmental stress affects microbial communities and their processes will allow us to better predict the resilience of coral reefs during changes in nutrient cycling and disease epidemics. This chapter explores the important role of microbial communities in keystone reef organisms such as reef-building Scleractinian corals and benthic filter-feeding sponges. These species represent the best studied systems in coral reefs for invertebrate-bacterial interactions. Diversity and function of microbial communities in the sediments and overlying seawater are also explored with microbially driven nutrient cycling in these habitats closely coupled to reef productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acinas SG, Anton J, Rodriguez-Valera F (1999) Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522

    PubMed  CAS  Google Scholar 

  • Aeby G, Work T, Fenner D, Didonato E (2008) Coral and crustose coralline algae disease on the reefs of American Samoa. In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, FL

    Google Scholar 

  • Agostini S, Suzuki Y, Casareto BE, Nakano Y, Hidaka M, Badrun N (2009) Coral symbiotic complex: hypothesis through vitamin B12 for a new evaluation Galaxea. J Coral Reef Stud 11:1–11

    Google Scholar 

  • Agostini S, Suzuki Y, Higuchi T, Casareto B, Yoshinaga K, Nakano Y, Fujimura H (2011) Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31:1–10

    Google Scholar 

  • Ainsworth TD, Hoegh-Guldberg O (2009) Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquat Biol 4:289–296

    Google Scholar 

  • Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O (2006) Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol 72:3016–3020

    PubMed  CAS  Google Scholar 

  • Ainsworth TD, Hoegh-Guldberg O, Leggat W (2008) Imaging the fluorescence of marine invertebrates and their associated flora. J Micros-Oxf 232:197–199

    CAS  Google Scholar 

  • Angermeier H, Kamke J, Abdelmohsen UR, Krohne G, Pawlik JR, Lindquist NL, Hentschel U (2011) The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiol Ecol 75:218–230

    PubMed  CAS  Google Scholar 

  • Anthony KRN, Maynard JA, Diaz-Pulido D, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Chang Biol 17:1798–1808

    Google Scholar 

  • Antonius A (1973) New observations on coral destruction in reefs. In: 10th Meeting of the Association of Island Marine Laboratories of the Caribbean. University of Puerto Rico: Association of Island Marine Laboratories of the Caribbean, p. 3

    Google Scholar 

  • Apprill A, Rappe MS (2011) Response of the microbial community to coral spawning in lagoon and reef flat environments of Hawaii USA. Aquat Microb Ecol 62:251–266

    Google Scholar 

  • Aronson R, Precht WF (2001) White-band diseases and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Google Scholar 

  • Ayukai T (1992) Picoplankton dynamics in Davies reef lagoon, the great barrier reef, Australia. J Plankton Res 14:1593–1606

    Google Scholar 

  • Ayukai T (1995) Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–147

    Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    PubMed  CAS  Google Scholar 

  • Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass mortalities in temperature benthic communities: a new case of emerging disease linked to climate change. Glob Chang Biol 13:2078–2088

    Google Scholar 

  • Banin E, Israely T, Kushmaro A, Loya Y, Orr E, Rosenberg E (2000) Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Appl Environ Microbiol 66:3031–3036

    PubMed  CAS  Google Scholar 

  • Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2007) Characterization of black band disease in Red Sea stony corals. Environ Microbiol 9:1995–2006

    PubMed  CAS  Google Scholar 

  • Barnes RD (1987) Invertebrate zoology. Harcourt Brace Jovanovich College Publishers, Fort Worth

    Google Scholar 

  • Barnes RSK, Hughes RN (1999) An introduction to marine ecology. Blackwell Science, Oxford, UK

    Google Scholar 

  • Barott KL, Rodriguez-Brito B, Janouškovec J, Marhaver KL, Smith JE, Keeling P, Rohwer FL (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol Rep 13:1192–1204

    CAS  Google Scholar 

  • Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

    PubMed  CAS  Google Scholar 

  • Bell PRF, Elmetri I, Uwins P (1999) Nitrogen fixation by Trichodesmium spp. In the Central and Northern Great barrier reef lagoon: relative importance of the fixed-nitrogen load. Mar Ecol Prog Ser 186:119–126

    CAS  Google Scholar 

  • Ben-Haim Y, Banim E, Kushmaro A, Loya Y, Rosenberg E (1999) Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ Microbiol 1:223–229

    PubMed  CAS  Google Scholar 

  • Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003a) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242

    PubMed  CAS  Google Scholar 

  • Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E (2003b) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    PubMed  CAS  Google Scholar 

  • Berkelmans R, De'ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83

    Google Scholar 

  • Borouierdi AFB, Vizcaino MI, Meyers A, Pollock EC, Huynh SL, Schock TB et al (2009) NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus. Environ Sci Technol 43:7658–7664

    Google Scholar 

  • Bourne DG (2005) Microbiological assessment of a disease outbreak on corals from Magnetic Island (Great Barrier Reef, Australia). Coral Reefs 24:304–312

    Google Scholar 

  • Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    PubMed  CAS  Google Scholar 

  • Bourne DG, Høj L, Webster NS, Payne M, Skindersøe M, Givskov M, Hall MA (2007) Aspects of the microbiology of phyllosoma rearing of the ornate rock lobster Panulirus ornatus. Aquaculture 268:274–287

    Google Scholar 

  • Bourne DG, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral associated microbial communities during a bleaching event. ISME J 2:350–363

    PubMed  CAS  Google Scholar 

  • Bourne DG, Garren M, Work TM, Rosenberg E, Smith G, Harvell CD (2009) Microbial disease and the coral holobiont. Trends Microbiol 17:554–562

    PubMed  CAS  Google Scholar 

  • Broadbent AD, Jones GB (2004) DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar Freshw Res 55:849–855

    CAS  Google Scholar 

  • Brodie J, Mitchell A (2005) Nutrients in Australian tropical rivers changes with agricultural development and implications for receiving environments. Mar Freshw Res 56:279–302

    CAS  Google Scholar 

  • Brodie J, De’ath G, Devlin M, Furnas M, Wright M (2007) Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar Freshw Res 58:342–353

    CAS  Google Scholar 

  • Bruckner AW, Bruckner RJ (2002) Coral predation by Sparisima viride and lack of relationship with coral disease. Bali 2002:1245–1249

    Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:1220–1227

    CAS  Google Scholar 

  • Burnett WJ, McKenzie JD (1997) Subcuticular bacteria from the brittle star Ophiactis balli (Echinodermata: Ophiuroidea) represent a new lineage of extracellular marine symbionts in the alpha subdivision of the class Proteobacteria. Appl Environ Microbiol 63:1721–1724

    PubMed  CAS  Google Scholar 

  • Campbell L, Nolla HA, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961

    CAS  Google Scholar 

  • Capone DG (1996) Coral reef ecosystems in the context of the marine nitrogen cycle. In: Bjork M, Semesi AK, Pedersen M, Bergman B (eds) Current trends in marine botanical research in the East African region. Ord & Vetande, Uppsala, pp 61–76

    Google Scholar 

  • Carlton RG, Richardson LL (1995) Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: Black band disease of corals. FEMS Microbiol Ecol 18:155–162

    CAS  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    PubMed  CAS  Google Scholar 

  • Casareto BE, Charpy L, Blanchot J, Suzuki Y, Kurasawa K, Ishikawa Y (2006) Phototrophic prokaryotes in Bora Bay, Miyako Island, Okinawa, Japan. In: Proceedings of 10th international coral reef symposium, Okinawa, Japan, vol 1, pp 844–853

    Google Scholar 

  • Casareto BE, Charpy L, Langlade MJ, Suzuki T, Ohba H, Niraula M, Suzuki Y. (2008) Nitrogen fixation in coral reef environments. In: Proceedings of the 11th international coral reef symposium, Fort Lauderdale, FL, vol 2, pp 896–900

    Google Scholar 

  • Castillo I, Lodeiros C, Nunez M, Campos I (2001) In vitro evaluation of antibacterial substances produced by bacteria isolated from different marine organisms. Rev Biol Trop 49:1213–1222

    PubMed  CAS  Google Scholar 

  • Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One 6:e20211

    PubMed  CAS  Google Scholar 

  • Ceh J, van Keulen M, Bourne DG (2011) Coral-associated bacterial communities on Ningaloo Reef, Western Australia. FEMS Microbiol Ecol 75:134–144

    PubMed  CAS  Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneovietti R, Bava S, Morganti C et al (2000) A catstrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-Western Mediterranean), summer 1999. Ecol Lett 3:284–293

    Google Scholar 

  • Cervino JM, Littler MM, Littler DS, Polson S, Goreau TJ, Brooks B, Smith GW (2005) Identification of microbes associated with coralline lethal algal disease and its relationship to glacial ice melt (global warming). Phytopathology 95:120–121

    Google Scholar 

  • Cervino JM, Winiarski-Cervino K, Polson SW, Goreau T, Smith GW (2006) Identification of bacteria associated with a disease affecting the marine sponge Ianthella basta in New Britain, Papua New Guinea. Mar Ecol Prog Ser 324:139–150

    CAS  Google Scholar 

  • Charpy L (2005) Importance of photosynthetic picoplankton in coral reef ecosystems. Life Environ 55:217–223

    Google Scholar 

  • Charpy L, Blanchot J (1998) Photosythetic picoplankton in French Polynesian atol lagoon: estimation of taxacontribution to biomass and production by flow cytometry. Mar Ecol Prog Ser 162:57–70

    Google Scholar 

  • Charpy L, Blanchot J (1999) Picophytoplankton biomass, community structure and productivity in the Great Astrolabe Lagoon, Fiji. Coral Reefs 18:255–262

    Google Scholar 

  • Chen C-P, Tseng C-H, Chen CA, Tang S-L (2011) The dynamics of microbial partnerships in the coral Isopora palifera. ISME J 5:728–740

    PubMed  CAS  Google Scholar 

  • Coles SL, Strathmann R (1973) Observations on coral mucus “flocs” and their potential trophic significance. Limnol Oceanogr 18:673–678

    Google Scholar 

  • Coma R, Ribes M, Gili J-M, Hughes RN (2001) The ultimate opportunists: consumers of seston. Mar Ecol Prog Ser 219:305–308

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    PubMed  CAS  Google Scholar 

  • Cooney RP, Pantos O, Le Tissier MD, Barer MR, O'Donnell AG, Bythell JC (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413

    PubMed  Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP, Morell JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120

    CAS  Google Scholar 

  • Cowart JD, Henkel TP, McMurray SE, Pawlik JR (2006) Sponge orange band (SOB): a pathogenic-like condition of the giant barrel sponge Xestospongia muta. Coral Reefs 25:513

    Google Scholar 

  • Crosbie ND, Furnas MJ (2001) Abundance distribution and flow-cytometric characaterization of picophytoprokaryote populations in central (17 degrees S) and southern (20 degrees S) shelf waters of the Great Barrier Reef. J Plankton Res 23:809–828

    Google Scholar 

  • Cullimore J, Dénarié J (2003) How legumes select their sweet talking symbionts. Science 302:575

    PubMed  CAS  Google Scholar 

  • Curson ARJ, Sullivan MJ, Todd JD, Johnston AWB (2011) DddY, a periplasmic dimethysulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria. ISME J 5:1191–1200

    PubMed  CAS  Google Scholar 

  • Daly M, Fautin DG, Cappola VA (2003) Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zoo J Linn Soc 139:419–437

    Google Scholar 

  • Daniels CA, Zeifman A, Heym K, Ritchie KB, Watson CA, Berzins I, Breitbart M (2011) Spatial heterogeneity of bacterial communities in the mucus of Montastraea annularis. Mar Ecol Prog Ser 426:29–40

    Google Scholar 

  • De Goeij JM, van Duyl FC (2007) Coral cavities are sinks of dissolved organic matter. Limnol Oceanogr 52:2608–2617

    Google Scholar 

  • D'Elia CF, Wiebe WJ (1990) Biogeochemical nutrient cycles in coral reef ecosystems. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 49–74

    Google Scholar 

  • Diaz MC, Akob D, Cary CS (2004) Denaturing gradient gel electrophoresis of nitrifying microbes associated with tropical sponges. Boll Mus Ist Biol Univ Genova 68:279–289

    Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:U628–U629

    Google Scholar 

  • Dubilier N, Amann R, Erséus C, Muyzer G, Park S, Giere O, Cavanaugh CM (1999) Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida). Mar Ecol Prog Ser 178:271–280

    Google Scholar 

  • Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:715–725

    Google Scholar 

  • Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O (2009) Presence of Aspergillus sydowii, a pathogen of gorgonian sea fans in the marine sponge Spongia obscura. ISME J 3:752–755

    PubMed  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    PubMed  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey LR (1993) Population control in symbiotic corals. Bioscience 43:453–464

    Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    PubMed  CAS  Google Scholar 

  • Ferrier-Pages C, Furla P (2001) Pico- and nanoplankton biomass and production in the two largest atoll lagoons of French Polynesia. Mar Ecol Prog Ser 211:63–76

    CAS  Google Scholar 

  • Fieseler L, Hentschel U, Grozdanov L, Schirmer A, Wen G, Platzer M et al (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73:2144–2155

    PubMed  CAS  Google Scholar 

  • Fisher HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    PubMed  CAS  Google Scholar 

  • Frias-Lopez J, Klaus JS, Bonheyo GT, Fouke BW (2004) Bacterial community associated with black band disease in corals. Appl Environ Microbiol 70:5955–5962

    PubMed  CAS  Google Scholar 

  • Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S (2006) Annually reoccuring bacterial communities are predicatable from ocean conditions. Proc Natl Acad Sci USA 103:13104–13109

    PubMed  CAS  Google Scholar 

  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown BE, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 105:7774–7778

    PubMed  CAS  Google Scholar 

  • Gaidos E, Rusch A, Ilardo M (2011) Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: community spatial structure, rare members and nitrogen-cycling guilds. Environ Microbiol 13:1138–1152

    PubMed  Google Scholar 

  • Gaino E, Pronzato R, Corriero G, Buffa P (1992) Mortality of commercial sponges: incidence in two Mediterranean areas. Bolletino di Zoologia 59:79–85

    Google Scholar 

  • Galstoff PS (1942) Wasting disease causing mortality of sponges in the West Indies and Gulf of Mexico. In: Proceedings of the VIII American Science Congress, Washington, DC, pp 411–421

    Google Scholar 

  • Garnier M, Labreuche Y, Garcia C, Robert M, Nicolas JL (2007) Evidence for the involvement of pathogenic bacteria in summer mortalities of the pacific oyster Crassostrea gigas. Microbial Ecology 53:187–196

    PubMed  CAS  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Google Scholar 

  • Garren M, Azam F (2010) New method for counting bacteria associated with coral mucus. Appl Environ Microbiol 76:6128–6133

    PubMed  CAS  Google Scholar 

  • Garren M, Azam F (2012) New directions in coral reef microbial ecology. Environ Microbiol 14:833–844

    PubMed  CAS  Google Scholar 

  • Garren M, Raymundo L, Guest J, Harvell CD, Azam F (2009) Resilience of coral-associated bacterial communities exposed to fish farm effluent. PLoS One 4:e7319

    PubMed  Google Scholar 

  • Gast GJ, Jonkers PJ, van Duyl FC, Bak RPM (1999) Bacteria, flagellates and nutrients in island fringing coral reef waters: influence of the ocean, the reef and eutrophication. Bull Mar Sci 65:523–538

    Google Scholar 

  • Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseffb JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54:938–951

    Google Scholar 

  • Giovannoni SJ, Rappe MS, Vergin KL, Adair NL (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc Natl Acad Sci USA 93:7979–7984

    PubMed  CAS  Google Scholar 

  • Glas MS, Sato Y, Ulstrup KE, Bourne DG (2012) Biogeochemical conditions determine virulence of Black Band Disease in corals. ISME J 6:1526–1534

    PubMed  CAS  Google Scholar 

  • Gochfeld DG, Aeby GS (2008) Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar Ecol Prog Ser 362:119–128

    Google Scholar 

  • Gochfeld DJ, Schlöder C, Thacker RW (2007) Sponge community structure and disease prevalence on coral reefs in Bocas del Toro, Panama. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, pp 335–342

    Google Scholar 

  • Gómez AC, Bourne DG, Hall M, Owens L, Høj L (2009) Molecular diagnosis of Vibrio harveyi in aquaculture: potential gene targets for real-time PCR detection. Aquaculture 287:1–10

    Google Scholar 

  • Haapkyla J, Seymour AS, Trebilco J, Smith D (2007) Coral disease prevalence and coral health in the Wakatobi Marine Park, south-east Sulawesi, Indonesia. J Mar Biol Assoc UK 87:403–414

    Google Scholar 

  • Harder T, Lau SCK, Dobretsov S, Fang TK, Qian P-Y (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 43:337–347

    PubMed  CAS  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ et al (1999) Review: marine ecology - emerging marine diseases - climate links and anthropogenic factors. Science 285:1505–1510

    PubMed  CAS  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Ecology - Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    PubMed  CAS  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters FEMS Microbiol Ecol 55:167–177

    CAS  Google Scholar 

  • Hewson I, Fuhrman JA (2006) Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. Mar Ecol Prog Ser 306:79–86

    CAS  Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    Google Scholar 

  • Hochmuth T, Piel J (2009) Polyketide synthases of bacterial symbionts in sponges – Evolution-based applications in natural products research. Phytochemistry 70:1841–1849

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O (2004) Coral reefs and projections of future change. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 463–484

    Google Scholar 

  • Hoegh-Guldberg O (2009) Climate change and coral reefs: Trojan horse or false prophecy? Coral Reefs 28:569–575

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    PubMed  CAS  Google Scholar 

  • Hoffmann F, Larsen O, Theil V, Rapp H-T, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiology 22:1–10

    Google Scholar 

  • Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT et al (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243

    PubMed  CAS  Google Scholar 

  • Hong M-J, Yu Y-T, Chen CA, Chiang P-W, Tang S-L (2009) Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Appl Environ Microbiol 75:7797–7806

    PubMed  CAS  Google Scholar 

  • Hooper JNA, Van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic / Plenum Publishers, New York

    Google Scholar 

  • Hovland M (2008) Deep-water coral reefs: unique Biodiversity hotspots. Praxis Publishing (Springer), Chichester

    Google Scholar 

  • Hughes TP (1994) Catastrophies, phase shifts and large-scale degradation of a Caribbean coral reef. Science 263:1547–1551

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    PubMed  CAS  Google Scholar 

  • Jetten MSM (2008) The microbial nitrogen cycle. Environ Microbiol 10:2903–2909

    PubMed  CAS  Google Scholar 

  • Jimenez E, Ribes M (2007) Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr 52:948–958

    CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Physiol 21:1219–1230

    CAS  Google Scholar 

  • Kamke J, Taylor MW, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4:498–508

    PubMed  CAS  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of Red Sea corals. Mar Biol 149:357–363

    CAS  Google Scholar 

  • Kim K (1994) Antimicrobial activity in Gorgonian corals (Coelenterata, Octocorallia). Coral Reefs 13:75–80

    Google Scholar 

  • Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164:S52–S63

    PubMed  Google Scholar 

  • Kimes NE, Van Nostrand JD, Weil E, Zhou J, Morris PJ (2010) Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ Microbiol 12:541–556

    PubMed  CAS  Google Scholar 

  • Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, et al (2012) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846

    Google Scholar 

  • Kirkwood M, Todd JD, Rypien KL, Johnston AWB (2010) The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J 4:147–150

    PubMed  CAS  Google Scholar 

  • Kleypas JA, Langdon CI (2006) Coral reefs and changing seawater chemistry. In: Phinney JT, Hoegh-Guldberg O, Kleypas J, Skirving W, Strong A (eds) Coral reefs and climate change: science and management. American Geophysical Union, Washington, DC, pp 73–110

    Google Scholar 

  • Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006) Role of elevated organic carbon levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119–125

    CAS  Google Scholar 

  • Klussmann-Kolb A, Brodie GD (1999) Internal storage and production of symbiotic bacteria in the reproductive system of a tropical marine gastropod. Mar Biol 133:443–447

    Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    PubMed  Google Scholar 

  • Koh EGL (1997) Do Scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23:379–398

    CAS  Google Scholar 

  • Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259

    PubMed  CAS  Google Scholar 

  • Krueger DM, Cavanaugh CM (1997) Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl Environ Microbiol 63:91–98

    PubMed  CAS  Google Scholar 

  • Kuta KG, Richardson LL (1997) Black band disease and the fate of diseased coral colonies in the Florida Keys. In: Proceedings of the 8th international coral reef symposium, Panama, vol 1, pp 575–578

    Google Scholar 

  • Kvennefors E, Roff G (2009) Evidence of cyanobacteria-like endosymbionts in Acroporid corals from the Great Barrier Reef. Coral Reefs 28:547

    Google Scholar 

  • Lafferty KD, Porter JW, Ford SE (2004) Are diseases increasing in the ocean? Annu Rev Ecol Evol Syst 35:31–54

    Google Scholar 

  • Lafi FF, Fuerst JA, Fieseler L, Hentschel U (2009) Widespread distribution of Poribacteria in Demospongiae. Appl Environ Microbiol 75:5695–5699

    PubMed  CAS  Google Scholar 

  • Lalli CM, Parsons TR (1995) Biological oceanography: an introduction. Butterworth-Heinemann Ltd., Oxford, UK

    Google Scholar 

  • Lavilla-Pitogo CR, Leaño EM, Paner MG (1998) Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164:337–349

    Google Scholar 

  • Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–1566

    PubMed  CAS  Google Scholar 

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. doi:10.1038/ismej.2010.165

    Google Scholar 

  • Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007) Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals. J Phycol 43:1010–1021

    CAS  Google Scholar 

  • Lema KA, Willis BL, Bourne DG (2012) Coral form specific associations with diazotrophic bacteria. FEMS Microb Ecol (in press)

    Google Scholar 

  • Lemoine N, Buell N, Hill A, Hill M (2007) Assessing the utility of sponge microbial symbiont communities as models to study global climate change: a case study with Halichondria bowerbanki. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros, Museu Nacional, Rio de Janeiro, pp 419–425

    Google Scholar 

  • Lesser MP, Blakemore RP (1990) Description of a novel symbiotic bacterium from the brittle star, Amphipholis squamata. Appl Environ Microbiol 56:2436–2440

    PubMed  CAS  Google Scholar 

  • Lesser MP, Walker CW (1992) Comparative study of the uptake of dissolved amino acids in sympatric brittle stars with and without endosymbiotic bacteria. Comp Biochem Physiol 101B:217–223

    CAS  Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    PubMed  CAS  Google Scholar 

  • Lesser MP, Falcon LI, Rodriguez-Roman A, Enriquez S, Hoegh-Guldberg O, Iglesias- Prieto R (2007) Nitrogen fixation by symbiotic cyanobactieria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 347:143–152

    Google Scholar 

  • Lessios HA (1998) Mass mortality of Diadema antillarum in Teh Caribbean: what have we learned? Ann Rev Ecol Syst 19:371–393

    Google Scholar 

  • Lessios HA, Garrido MJ, Kessing BD (2001) Demographic history of Diadema antillarum, a keystone herbivore on Caribbean reefs. Proc Roy Soc B: Biol Sci 268:2347–2353

    CAS  Google Scholar 

  • Lessios HA, Cubit JD, Robertson DR, Shulman MJ, Parker MR, Garrity SD, Levings SC (1984) Mass mortality of Diadema antillarum on the Caibbean coast of Panama. Coral Reefs 3:173–182

    Google Scholar 

  • Levinton JS (1995) Marine biology: function, biodiversity, ecology. Oxford University Press, New York

    Google Scholar 

  • Linares C, Coma R, Garrabou J, Díaz D, Cabala M (2008) Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J Appl Ecol 45:688–699

    Google Scholar 

  • Linley EAS, Koop K (1986) Significance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. Mar Biol 92:457–464

    Google Scholar 

  • Littler M, Littler D (1995) Impact of CLOD pathogen on Pacific coral reefs. Science 267:1356–1360

    PubMed  CAS  Google Scholar 

  • Littler M, Littler D (1998) An undescribed fungal pathogen of reef-forming crustose coralline algae discovered in American Samoa. Coral Reefs 17:144

    Google Scholar 

  • Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ Microbiol Rep 3:651–660

    CAS  Google Scholar 

  • Littman RA, Willis BL, Pfeffer C, Bourne DG (2009) Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol 68:152–163

    PubMed  CAS  Google Scholar 

  • Liu MY, Kjelleberg S, Thomas T (2010) Functional genomic analysis of an uncultured delta-proteobacterium in the sponge Cymbastela concentrica. ISME J 5:427–435

    PubMed  Google Scholar 

  • López-Legentil S, Song B, McMurray SE, Pawlik JR (2008) Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta. Mol Ecol 17:1840–1849

    PubMed  Google Scholar 

  • López-Legentil S, Erwin PE, Pawlik JR, Song B (2010) Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monoxygenase genes associated with the giant barrel sponge Xestospongia muta. Microb Ecol 60:561–571

    PubMed  Google Scholar 

  • Luter HM, Whalan S, Webster NS (2010a) Prevalence of tissue necrosis and brown spot lesions in a common marine sponge. Mar Freshw Res 61:481–484

    Google Scholar 

  • Luter HM, Whalan S, Webster NS (2010b) Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta. Appl Environ Microbiol 76:5736–5744

    PubMed  CAS  Google Scholar 

  • Maldonado M, Sánchez-Tocino L, Navarro C (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia: epidemic incidence and defense mechanisms. Mar Biol 157:1577–1590

    Google Scholar 

  • Mayer FW, Wild C (2010) Corl mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. Mar Freshw Res 61:1006–1014

    CAS  Google Scholar 

  • McMurray SE, Henkel TP, Pawlik JR (2010) Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology 91:560–570

    PubMed  Google Scholar 

  • Meikle P, Richards GN, Yellowlees D (1988) Structural investigations on the mucus from 6 species of coral. Mar Biol 99:187–193

    CAS  Google Scholar 

  • Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5:51–60

    PubMed  Google Scholar 

  • Meyer B, Kuever J (2008) Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microbial Ecol 56:306–321

    CAS  Google Scholar 

  • Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    PubMed  CAS  Google Scholar 

  • Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    PubMed  CAS  Google Scholar 

  • Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154

    Google Scholar 

  • Mouchka ME, Hewson I, Harvell DC (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Intergr Comp Biol 50:662–674

    Google Scholar 

  • Mukherjee J, Webster NS, Llewellyn LE (2009) Purification and characterization of a collagenolytic enzyme from a pathogen of the Great Barrier Reef sponge Rhopaloeides odorabile. PLoS One 4:e7177

    PubMed  Google Scholar 

  • Negandhi K, Blackwelder PL, Ereskovsky AV, Lopez JV (2010) Florida reef sponges harbor coral disease-associated microbes. Symbiosis 51:117–129

    Google Scholar 

  • Negri AP, Webster NS, Hill RT, Heyward AJ (2001) Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar Ecol Prog Ser 223:121–131

    Google Scholar 

  • Nelson CE, Alldredge AL, McCliment EA, Amaral-Zettler LA, Carlson CA (2011) Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J 5:1374–1387

    PubMed  CAS  Google Scholar 

  • Off S, Alawi M, Spieck E (2010) Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol 76:4640–4646

    PubMed  CAS  Google Scholar 

  • Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30

    PubMed  CAS  Google Scholar 

  • Olson JB, Gochfeld DJ, Slattery M (2006) Aplysina red band syndrome: a new threat to Caribbean sponges. Dis Aquat Organ 71:163–168

    PubMed  CAS  Google Scholar 

  • Olson ND, Ainsworth TD, Gates RD, Takabayashi M (2009) Diazotrophic bacteria associated with Hawaiian montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exper Mar Biol Ecol 371:140–146

    CAS  Google Scholar 

  • Pantos O, Bythell JC (2006) Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture independent 16S rRNA techniques. Dis Aquat Organ 69:79–88

    PubMed  CAS  Google Scholar 

  • Pantos O, Cooney RP, Le Tissier MDA, Barer MR, O'Donnell AG, Bythell JC (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol 5:370–382

    PubMed  CAS  Google Scholar 

  • Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In Charpy L, Larkum AWD (eds) Marine cyanobacteria. Bulletin de l’Institut Oce´anographique, Monaco, pp 457–475

    Google Scholar 

  • Patten NL, Mitchell JG, Middelboe M, Eyre BD, Seuront L, Harrison PL, Glud RN (2008) Bacterial and viral dynamics during a mass coral spawning period on the Great Barrier Reef. Aquat Microb Ecol 50:209–220

    Google Scholar 

  • Patterson KL, Porter JW, Ritchie KE, Polson SW, Mueller E, Peters EC et al (2002) The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci U S A 99:8725–8730

    PubMed  CAS  Google Scholar 

  • Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61:888–898

    Google Scholar 

  • Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362

    PubMed  CAS  Google Scholar 

  • Pollock FJ, Morris PJ, Willis BL, Bourne DG (2011) The urgent need for robust coral disease diagnostics. PLoS Pathog 7:e1002183

    PubMed  Google Scholar 

  • Pollock FJ, Wilson B, Johnson WR, Morris PJ, Willis BL, Bourne DG (2010) Phylogeny of the coral pathogen Vibrio coralliilyticus. Environ Microbiol Rep 2:172–178

    CAS  Google Scholar 

  • Porter JW, Dustan P, Jaap WC, Patterson KL, Kosmynin V, Meier OW et al (2001) Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460:1–24

    Google Scholar 

  • Rabus R, Fukui M, Wilkes H, Widdle F (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 62:3605–3613

    PubMed  CAS  Google Scholar 

  • Raina J-B, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501

    PubMed  CAS  Google Scholar 

  • Raina J-B, Dinsdale E, Willis BL, Bourne DG (2010) Do organic sulphur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18:101–108

    PubMed  CAS  Google Scholar 

  • Rath H, Schiller C, Herndl GJ (1993) Ectoenzymatic activity and bacterial dynamics along a trophic gradient in the Caribbean Sea. Mar Ecol Prog Ser 102:89–96

    CAS  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    PubMed  CAS  Google Scholar 

  • Richardson LL (1997) Occurrence of the black band disease cyanobacterium on healthy corals of the Florida Keys. Bull Mar Sci 61:485–490

    Google Scholar 

  • Richardson LL (2004) Black band disease. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 325–336

    Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    CAS  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406

    Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–91

    Google Scholar 

  • Rosenberg E, Kellogg CA, Rohwer F (2007a) Coral microbiology. Oceanography 20:146–154

    Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007b) The role of microorganisms in coral health, disease and evolution. Nat Rev 5:355–362

    CAS  Google Scholar 

  • Rusch A, Hannides AK, Gaidos E (2009) Diverse communities of active Bacteria and Archaea along oxygen gradients in coral reef sediments. Coral Reefs 28:15–26

    Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    PubMed  CAS  Google Scholar 

  • Sakka A, Legendre L, Gosselin M, Niquil N, Delesalle B (2002) Carbon budget of the planktonic food web in an atoll lagoon (Takapoto, French Polynesia). J Plankton Res 24:301–320

    Google Scholar 

  • Santos E, Alves N, Dias G, Mazotto AM, Vermelho A, Vora G et al (2011) Genomics and proteomics of the coral pathogen Vibrio coralliilyticus reveal a vast virulence repertoire. ISME J 5:1471–1483

    Google Scholar 

  • Sato Y, Willis BL, Bourne DG (2010) Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. ISME J 4:203–214

    PubMed  Google Scholar 

  • Schläppy M-L, Schöttner S, Lavik G, Kuypers M, de Beer D, Hoffmann F (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602

    Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977

    CAS  Google Scholar 

  • Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708

    PubMed  CAS  Google Scholar 

  • Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N et al (2011) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    PubMed  Google Scholar 

  • Sebens K (1994) Biodiversity of coral reefs: what are we losing and why? Amer Zool 34:115–133

    Google Scholar 

  • Selvin J, Shanmugha Priya S, Seghal Kiran G, Thangavelu T, Sapna Bai N (2007) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363

    PubMed  Google Scholar 

  • Seymour JR, Patten N, Bourne DG, Mitchell JG (2005) Spatial dynamics of virus-like particles and heterotrophic bacteria within a shallow coral reef system. Mar Ecol Prog Ser 288:1–8

    Google Scholar 

  • Shashar N, Feldstein T, Cohen Y, Loya Y (1994a) Nitrogen fixation (acetylene reduction) on a coral reef. Coral Reefs 13:171–174

    Google Scholar 

  • Shashar N, Cohen Y, Loya Y, Sar N (1994b) Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser 111:259–264

    CAS  Google Scholar 

  • Shields JD (2011) Diseases of spiny lobsters: a review. J Invertebr Pathol 106:79–91

    PubMed  CAS  Google Scholar 

  • Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990

    PubMed  CAS  Google Scholar 

  • Siegl A, Hentschel U (2010) PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ Microbiol Rep 2:507–513

    CAS  Google Scholar 

  • Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C et al (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70

    PubMed  Google Scholar 

  • Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524

    PubMed  CAS  Google Scholar 

  • Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E et al (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–845

    PubMed  Google Scholar 

  • Southwell MW, Popp BN, Martens CS (2008a) Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem 108:96–108

    CAS  Google Scholar 

  • Southwell MW, Weisz J, Martens CS, Lindquist N (2008b) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986–996

    CAS  Google Scholar 

  • Stambler N (2011) Zooxanthellae: the yellow symbionts inside animals. In: Dubinsky A, Stambler N (eds) Coral reefs: an ecosystem in transition Part 3. Springer, Netherlands, pp 87–106

    Google Scholar 

  • Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M, Taylor MW (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10:1087–1094

    PubMed  CAS  Google Scholar 

  • Stockner JG (1988) Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr 33:765–775

    CAS  Google Scholar 

  • Sugumar G, Nakai T, Hirata Y, Matsubara D, Muroga K (1998) Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis Aquat Organ 33:111–118

    PubMed  CAS  Google Scholar 

  • Sumich JL, Morrissey JF (2004) An introduction to the biology of marine life. Jones and Bartlett, Sudbury, MA

    Google Scholar 

  • Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS One 5:e9554

    PubMed  Google Scholar 

  • Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR et al (2009) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3:512–521

    PubMed  CAS  Google Scholar 

  • Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens indentified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS One 3:e2393

    PubMed  Google Scholar 

  • Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG (2009) Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS One 4:e4511

    PubMed  Google Scholar 

  • Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser 266:273–302

    Google Scholar 

  • Sutherland KP, Shaban S, Joyner JL, Porter JW, Lipp EK (2011) Human pathogen shown to cause disease in the threatened Eklhorn coral Acropora palmata. PLoS One 6:e23468

    PubMed  CAS  Google Scholar 

  • Sutherland KP, Porter JW, Turner JW, Thomas BJ, Looney EE, Luna TP et al (2010) Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral, Acropora palmata. Environ Microbiol 12:1122–1131

    PubMed  CAS  Google Scholar 

  • Sweatman H, Delean S, Syms C (2011) Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30:521–531

    Google Scholar 

  • Sweet MJ, Croquer A, Bythell JC (2011) Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52

    Google Scholar 

  • Taylor MW, Thacker RW, Hentschel U (2007a) Genetics. Evolutionary insights from sponges. Science 316:1854–1855

    PubMed  CAS  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007b) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    PubMed  CAS  Google Scholar 

  • Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A et al (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567

    PubMed  CAS  Google Scholar 

  • Todd JD, Kirkwood M, Newton-Payne S, Johnston AWB (2012) DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J 6:223–226

    Google Scholar 

  • Toledo-Hernandez C, Zuluaga-Montero A, Bones-Gonzalez A, Rodriguez JA, Sabat AM, Bayman P (2008) Fungi in healthy and diseased sea fans (Gorgonia ventalina): is Aspergillus sydowii always the pathogen? Coral Reefs 27:707–714

    Google Scholar 

  • Torréton J-P, Dufour P (1996) Temporal and spatial stability of bacterioplankton biomass and productivity in an atoll lagoon. Aquat Microb Ecol 11:251–261

    Google Scholar 

  • Torréton J-P, Pagès J, Talbot V (2002) Relationship between bacterioplankton and phytoplankton biomass, production and turnover rate in Tuamotu atoll lagoons. Aquat Microb Ecol 28:267–277

    Google Scholar 

  • Torréton J-P, Rochelle-Newall E, Jouon A, Faure V, Jacquet S, Douillet P (2007) Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuar Coast Shelf Sci 74:766–776

    Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    CAS  Google Scholar 

  • Uthicke S, McGuire K (2007) Bacterial communities in great barrier reef calcareous sediments: contrasting 16S rDNA libraries from nearshore and outer shelf reefs. Estuar Coast Shelf Sci 72:188–200

    Google Scholar 

  • Vacelet J, Fiala-Médioni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser 145:77–85

    Google Scholar 

  • Van Alstyne K, Schupp P, Slattery M (2006) The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 25:321–327

    Google Scholar 

  • van Duyl F, Gast G, Steinhoff W, Kloff S, Veldhuis M, Bak R (2002) Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef waters. Coral Reefs 21:293–306

    Google Scholar 

  • van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplankton growth with different coral reef water types. Aquat Microb Ecol 24:17–26

    Google Scholar 

  • Van Duyl FC, Scheffers SR, Thomas FIM, Driscoll M (2006) The effect of water exchange on bacterioplankton depletion and inorganic nutrient fluxes in coral cavities. Coral Reefs 25:23–36

    Google Scholar 

  • Vargas-Angel B (2010) Crustose coralline algal diseases in the U.S.-Affiliated Pacific Islands. Coral Reefs 29:943–956

    Google Scholar 

  • Vega Thurber RLV, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C et al (2008) Metagenomic analysis indicates that stressors induce production of herpeslike viruses in the coral Porites compressa. Proc Nat Acad Sci USA 105:18413–18418

    PubMed  CAS  Google Scholar 

  • Vezzuli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C (2010) Vibrio infection triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12:2007–2019

    Google Scholar 

  • Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Höfle MG, Pruzzo C (2012) Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6:21–30

    Google Scholar 

  • Vicente VP (1989) Regional commercial sponge extinction in the West Indies: are recent climatic changes responsible? Mar Ecol Prog Ser 10:179–191

    Google Scholar 

  • Vidal-Dupiol J, Ladrière O, Meistertzheim A-L, Fouré L, Adjeroud M, Mitta G (2011) Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus. Journal of Experimental Biology and Ecology 214:1533–1545

    CAS  Google Scholar 

  • Viehman S, Mills DK, Meichel GW, Richardson LL (2006) Culture and identification of Desulfovibrio spp. from corals infected by black band disease on Dominican and Florida Keys reefs. Dis Aquat Organ 69:119–127

    PubMed  CAS  Google Scholar 

  • Vila-Costa M, Rinta-Kanto JM, Sun S, Sharma S, Porestsky R, Moran MA (2010) Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate. ISME J 4:1410–1420

    PubMed  CAS  Google Scholar 

  • Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE et al (2010) Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Microb Ecol 59:646–657

    PubMed  Google Scholar 

  • Vogel G (2008) The inner lives of sponges. Science 320:1028–1030

    PubMed  CAS  Google Scholar 

  • Walker CW, Lesser MP (1989) Nutrition and development of brooded embryos in the brittlestar Amphipholis squamata: do endosymbiotic bacteria play a role? Mar Biol 103:519–530

    Google Scholar 

  • Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375

    PubMed  CAS  Google Scholar 

  • Webster NS, Blackall LL (2009) What do we really know about sponge- microbial symbioses? ISME J 3:1–3

    PubMed  CAS  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    PubMed  CAS  Google Scholar 

  • Webster NS, Watts JE, Hill RT (2001a) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Marine Biotechnol 3:600–608

    CAS  Google Scholar 

  • Webster NS, Cobb RE, Negri AP (2008a) Temperature thresholds for bacterial symbiosis with a sponge. ISME J 2:830–842

    PubMed  CAS  Google Scholar 

  • Webster NS, Negri AP, Webb RI, Hill RT (2002) A spongin-boring alpha proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge, Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309

    Google Scholar 

  • Webster NS, Botté ES, Soo RM, Whalan S (2011a) The larval sponge holobiont exhibits high thermal tolerance. Environ Microbiol Rep 3:756–762

    Google Scholar 

  • Webster NS, Soo R, Cobb R, Negri AP (2011b) Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J 5:759–770

    PubMed  CAS  Google Scholar 

  • Webster NS, Webb RI, Ridd MJ, Hill RT, Negri AP (2001b) The effects of copper on the microbial community of a coral reef sponge. Environ Microbiol 3:19–31

    PubMed  CAS  Google Scholar 

  • Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R (2008b) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10:3366–3376

    PubMed  CAS  Google Scholar 

  • Webster NS, Smith LD, Heyward AJ, Watts JE, Webb RI, Blackall LL, Negri AP (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221

    PubMed  CAS  Google Scholar 

  • Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082

    PubMed  CAS  Google Scholar 

  • Wegley L, Edwards RA, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    PubMed  CAS  Google Scholar 

  • Weil E (2004) Coral diseases in the wider Caribbean. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer-Verlag, Berlin, pp 35–68

    Google Scholar 

  • Weil E, Smith G, Gil-Agudelo DL (2006) Status and progress in coral reef disease research. Dis Aquat Organ 69:1–7

    PubMed  Google Scholar 

  • Weinbauer MG, Kerros ME, Motegi C, Wilhartitz IC, Rassoulzadegan F, Torréton J-P et al (2010) Bacterial community composition and potential controlling mechanisms along a trophic gradient in a barrier reef system. Aquat Microb Ecol 60:15–28

    Google Scholar 

  • Weisz J, Hentschel U, Lindquist N, Martens C (2007) Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar Biol 152:475–483

    CAS  Google Scholar 

  • Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    CAS  Google Scholar 

  • Wild C, Laforsch C, Huettel M (2006) Detection and enumeration of microbial cells within highly porous calcareous reef sands. Mar Freshw Res 57:415–420

    Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    PubMed  CAS  Google Scholar 

  • Wild C, Rasheed MYM, Werner U, Franke U, Johnstone R, Huettel M (2004b) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Google Scholar 

  • Wild C, Mayr C, Wehrmann L, Schöttner S, Naumann M, Hoffmann F, Rapp HT (2008) Organic matter release by cold water corals and its implication for fauna–microbe interaction. Mar Ecol Prog Ser 372:67–75

    CAS  Google Scholar 

  • Wilkinson CR (1980) Cyanobacteria symbiotic in marine sponges. In: Schwemmler W, Schneck HEA (eds) Endocytobiology, endosymbiosis and cell biology. De Gruyter, Berlin, pp 553–563

    Google Scholar 

  • Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412

    PubMed  CAS  Google Scholar 

  • Wilkinson CR (1984) Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc Roy Soc Lond (B) 220:509–517

    Google Scholar 

  • Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress, Bristol, pp 112–128

    Google Scholar 

  • Williams WM, Viner AB, Broughton WJ (1987) Nitrogen fixation (acetylene-reduction) associated with the living coral Acropora variabilis. Mar Biol 94:531–535

    Google Scholar 

  • Willis BL, Page CA, Dinsdale EA (2004) Corals disease on the Great Barrier Reef. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Heildelberg, pp 69–104

    Google Scholar 

  • Work TM, Aeby GS (2006) Systematically describing gross lesions in corals. Dis Aquat Organ 70:155–160

    PubMed  Google Scholar 

  • Work TM, Richardson LL, Reynolds TL, Willis BL (2008) Biomedical and veterinary science can increase our understanding of coral disease. J Exp Mar Biol Ecol 362:63–70

    Google Scholar 

  • Wulff JL (2007) Disease prevalence and population density over time in three common Caribbean coral reef sponge species. J Mar Biol Assoc UK 87:1715–1720

    Google Scholar 

  • Yahel G, Post AF, Fabricius KE, Marie D, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563

    Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer K-H et al (2008) The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    PubMed  CAS  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Bourne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bourne, D.G., Webster, N.S. (2013). Coral Reef Bacterial Communities. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_48

Download citation

Publish with us

Policies and ethics