Skip to main content

CNVeM: Copy Number Variation Detection Using Uncertainty of Read Mapping

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7262))

  • 1384 Accesses

Abstract

Copy number variations (CNVs) are widely known to be an important mediator for diseases and traits. The development of high-throughput sequencing (HTS) technologies has provided great opportunities to identify CNV regions in mammalian genomes. In a typical experiment, millions of short reads obtained from a genome of interest are mapped to a reference genome. The mapping information can be used to identify CNV regions. One important challenge in analyzing the mapping information is the large fraction of reads that can be mapped to multiple positions. Most existing methods either only consider reads that can be uniquely mapped to the reference genome, or randomly place a read to one of its mapping positions. Therefore, these methods have low power to detect CNVs located within repeated sequences. In this study, we propose a probabilistic model, CNVeM, that utilizes the inherent uncertainty of read mapping. We use maximum likelihood to estimate locations and copy numbers of copied regions, and implement an expectation-maximization (EM) algorithm. One important contribution of our model is that we can distinguish between regions in the reference genome that differ from each other by as little as 0.1%. As our model aims to predict the copy number of each nucleotide, we can predict the CNV boundaries with high resolution. We apply our method to simulated datasets and achieve higher accuracy compared to CNVnator. Moreover, we apply our method to real data from which we detected known CNVs. To our knowledge, this is the first attempt to predict CNVs at nucleotide resolution, and to utilize uncertainty of read mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzov, A., Urban, A.E., Snyder, M., Gerstein, M.: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Research 21(6), 974–984 (2011)

    Article  Google Scholar 

  2. Alkan, C., Kidd, J.M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman, J.O., Baker, C., Malig, M., Mutlu, O., Cenk Sahinalp, S., Gibbs, R.A., Eichler, E.E.: Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genetics 41(10), 1061–1067 (2009)

    Article  Google Scholar 

  3. Cappuzzo, F., Hirsch, F.R., Rossi, E., Bartolini, S., Ceresoli, G.L., Bemis, L., Haney, J., Witta, S., Danenberg, K., Domenichini, I., Ludovini, V., Magrini, E., Gregorc, V., Doglioni, C., Sidoni, A., Tonato, M., Franklin, W.A., Crino, L., Bunn Jr., P.A., Varella-Garcia, M.: Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. Journal of National Cancer Institute 97(9), 643–655 (2005)

    Article  Google Scholar 

  4. Carter, N.P.: Methods and strategies for analyzing copy number variation using dna microarrays. Nature Genetics 39(suppl. 7), 16–21 (2007)

    Article  Google Scholar 

  5. Chen, P.-A., Liu, H.-F., Chao, K.-M.: CNVDetector: locating copy number variations using array CGH data. Bioinformatics 24(23), 2773–2775 (2008)

    Article  Google Scholar 

  6. Chiang, D.Y., Getz, G., Jaffe, D.B., O’Kelly, M.J.T., Zhao, X., Carter, S.L., Russ, C., Nusbaum, C., Meyerson, M., Lander, E.S.: High-resolution mapping of copy-number alterations with massively parallel sequencing. Nature Methods 6(1), 99–103 (2009)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

  8. 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

    Article  Google Scholar 

  9. Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I., Eichler, E.E., Cenk Sahinalp, S.: mrsfast: a cache-oblivious algorithm for short-read mapping. Nature Methods 7(8), 576–577 (2010)

    Article  Google Scholar 

  10. Halperin, E., Hazan, E.: HAPLOFREQ-estimating haplotype frequencies efficiently. Journal of Computational Biology 13(2), 481–500 (2006)

    Article  MathSciNet  Google Scholar 

  11. He, D., Furlotte, N., Eskin, E.: Detection and reconstruction of tandemly organized de novo copy number variations. BMC Bioinformatics 11(suppl. 11), S12 (2010)

    Article  Google Scholar 

  12. He, D., Hormozdiari, F., Furlotte, N., Eskin, E.: Efficient algorithms for tandem copy number variation reconstruction in repeat-rich regions. Bioinformatics 27(11), 1513–1520 (2011)

    Article  Google Scholar 

  13. Hormozdiari, F., Alkan, C., Eichler, E.E., Cenk Sahinalp, S.: Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Research 19(7), 1270–1278 (2009)

    Article  Google Scholar 

  14. John Iafrate, A., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., Lee, C.: Detection of large-scale variation in the human genome. Nature Genetics 36(9), 949–951 (2004)

    Article  Google Scholar 

  15. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biology 10(3), R25 (2009)

    Article  Google Scholar 

  16. Medvedev, P., Fiume, M., Dzamba, M., Smith, T., Brudno, M.: Detecting copy number variation with mated short reads. Genome Research 20(11), 1613–1622 (2010)

    Article  Google Scholar 

  17. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y.-H., Hicks, J., Spence, S.J., Lee, A.T., Puura, K., Lehtimki, T., Ledbetter, D., Gregersen, P.K., Bregman, J., Sutcliffe, J.S., Jobanputra, V., Chung, W., Warburton, D., King, M.-C., Skuse, D., Geschwind, D.H., Conrad Gilliam, T., Ye, K., Wigler, M.: Strong association of de novo copy number mutations with autism. Science 316(5823), 445–449 (2007)

    Article  Google Scholar 

  18. Simpson, J.T., McIntyre, R.E., Adams, D.J., Durbin, R.: Copy number variant detection in inbred strains from short read sequence data. Bioinformatics 26(4), 565–567 (2010)

    Article  Google Scholar 

  19. Sudbery, I., Stalker, J., Simpson, J.T., Keane, T., Rust, A.G., Hurles, M.E., Walter, K., Lynch, D., Teboul, L., Brown, S.D., Li, H., Ning, Z., Nadeau, J.H., Croniger, C.M., Durbin, R., Adams, D.J.: Deep short-read sequencing of chromosome 17 from the mouse strains A/J and CAST/Ei identifies significant germline variation and candidate genes that regulate liver triglyceride levels. Genome Biology (October 2009)

    Google Scholar 

  20. Sudmant, P.H., Kitzman, J.O., Antonacci, F., Alkan, C., Malig, M., Tsalenko, A., Sampas, N., Bruhn, L., Shendure, J., 1000 Genomes Project, Eichler, E.E.: Diversity of human copy number variation and multicopy genes. Science 330(6004), 641–646 (2010)

    Article  Google Scholar 

  21. Tuzun, E., Sharp, A.J., Bailey, J.A., Kaul, R., Anne Morrison, V., Pertz, L.M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D., Olson, M.V., Eichler, E.E.: Fine-scale structural variation of the human genome. Nature Genetics 37(7), 727–732 (2005)

    Article  Google Scholar 

  22. Yoon, S., Xuan, Z., Makarov, V., Ye, K., Sebat, J.: Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Research 19(9), 1586–1592 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Hormozdiari, F., Yang, WY., Halperin, E., Eskin, E. (2012). CNVeM: Copy Number Variation Detection Using Uncertainty of Read Mapping. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29627-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29626-0

  • Online ISBN: 978-3-642-29627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics