Skip to main content

Variability of Platelet Indices and Function: Acquired and Genetic Factors

  • Chapter
  • First Online:
Antiplatelet Agents

Abstract

Each individual has an inherent variable risk of bleeding linked to genetic or acquired abnormal platelet number or platelet dysfunction. In contrast, it is less obvious that the variability of platelet phenotypes (number, mean platelet volume, function) may contribute to the variable individual risk of thrombosis. Interindividual variability of platelet indices or function may be either due to acquired factors, such as age, sex, metabolic variables, smoke, dietary habits, and ongoing inflammation, or due to genetic factors. Acquired variables explain a small portion of the heterogeneity of platelet parameters. Genetic factors, instead, appear to play a major role, although a consistent portion of such a genetic variance has not yet been attributed to any specific genetic factor, possibly due to the high number of DNA loci potentially involved and to the limited effect size of each individual SNP. A portion of variance remains thus unexplained, also due to variability of test performance. A major contradiction in present platelet knowledge is, indeed, the difficulty to reconcile the universally accepted importance of platelet indices or function and the lack of reliable platelet parameters in cardiovascular risk prediction models. Trials on antiplatelet drugs were generally designed to select a homogeneous sample, whose results could be applied to an “average subject,” tending to exclude the deviation/extreme values. As the current indications for antiplatelet treatment in primary or secondary prevention of ischemic vascular disease still derive from the results of such clinical trials where platelet function and its variability was not investigated, we cannot at present rely upon any current platelet test to either initiate, or monitor, or modify or stop treatment with any antiplatelet drug. Evidence is, however, increasing that traditional platelet aggregometry and other more recently developed platelet function assays could be useful to optimize antiplatelet therapy and to predict major adverse cardiac events.The observation of interindividual differences in platelet response to antiplatelet drugs has enlarged the spectrum and the possible clinical relevance of the variability of platelet indices or function. The development of “personalized medicine” will benefit from the concepts discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albers AR, Varghese S, Vitseva O et al (2004) The anti-inflammatory effects of purple grape juice consumption in subjects with stable coronary artery disease. Arterioscler Thromb Vasc Biol 24:e179–e180

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Fernández-Ortiz A, Bernardo E et al (2004) High clopidogrel loading dose during coronary stenting: effects on drug response and interindividual variability. Eur Heart J 25:1903–1910

    CAS  PubMed  Google Scholar 

  • Antithrombotic Trialists’ (ATT) Collaboration, Baigent C, Blackwell L, Collins R et al (2009) Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373:1849–1860

    PubMed  Google Scholar 

  • Antithrombotic Trialists’ Collaboration (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324:71–86

    Google Scholar 

  • Bain BJ (1996) Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol 49:664–666

    CAS  PubMed  Google Scholar 

  • Barbalic M, Dupuis J, Dehghan A et al (2010) Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. Hum Mol Genet 19:1863–1872

    CAS  PubMed  Google Scholar 

  • Bath PM, Butterworth RJ (1996) Platelet size: measurement, physiology and vascular disease. Blood Coagul Fibrinolysis 7:157–161

    CAS  PubMed  Google Scholar 

  • Bath P, Algert C, Chapman N et al (2004) Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke 35:622–626

    PubMed  Google Scholar 

  • Becker DM, Segal J, Vaidya D et al (2006) Sex differences in platelet reactivity and response to low-dose aspirin therapy. J Am Coll Cardiol 295:1420–1427

    CAS  Google Scholar 

  • Belch J, MacCuish A, Campbell I, Prevention of Progression of Arterial Disease and Diabetes Study Group, Diabetes Registry Group, Royal College of Physicians Edinburgh et al (2008) The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. Br Med J 337:a1840

    Google Scholar 

  • Berger JS, Eraso LH, Xie D et al (2010) Mean platelet volume and prevalence of peripheral artery disease, the National Health and Nutrition Examination Survey, 1999–2004. Atherosclerosis 213:586–591

    CAS  PubMed  Google Scholar 

  • Bernlochner I, Byrne RA, Kastrati A et al (2011) The future of platelet function testing to guide therapy in clopidogrel low and enhanced responders. Expert Rev Cardiovasc Ther 9:999–1014

    CAS  PubMed  Google Scholar 

  • Bertelé V, Cerletti C, Schieppati A et al (1981) Inhibition of thromboxane synthetase does not necessarily prevent platelet aggregation. Lancet 1:1057–1058

    Google Scholar 

  • Bertelé V, Falanga A, Tomasiak M et al (1984) Pharmacologic inhibition of thromboxane synthetase and platelet aggregation: modulatory role of cyclooxygenase products. Blood 63:1460–1466

    PubMed  Google Scholar 

  • Biino G, Balduini CL, Casula L et al (2011) Analysis of 12, 517 inhabitants of Sardinian geographic isolate reveals that propensity to develop mild thrombocytopenia during ageing and to present mild, transient thrombocytosis in youth are new genetic traits. Haematologica 96:96–101

    PubMed  Google Scholar 

  • Bliden KP, Dichiara J, Lawal L et al (2008) The association of cigarette smoking with enhanced platelet inhibition by clopidogrel. J Am Coll Cardiol 52:531–533

    CAS  PubMed  Google Scholar 

  • Bonello L, Tantry US, Marcucci R, Working Group on High On-Treatment Platelet Reactivity et al (2010) Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol 56:919–933

    CAS  PubMed  Google Scholar 

  • Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    CAS  PubMed  Google Scholar 

  • Bouman HJ, Schomig E, van Werkum JW et al (2010) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17:110–116

    PubMed  Google Scholar 

  • Braekkan SK, Mathiesen EB, Njølstad I et al (2010) Mean platelet volume is a risk factor for venous thromboembolism: the Tromsø Study, Tromsø, Norway. J Thromb Haemost 8:157–162

    CAS  PubMed  Google Scholar 

  • Bray PF, Mathias RA, Faraday N et al (2007a) Heritability of platelet function in families with premature coronary artery disease. J Thromb Haemost 5:1617–1623

    CAS  PubMed  Google Scholar 

  • Bray PF, Howard TD, Vittinghoff E et al (2007b) Effect of genetic variations in platelet glycoproteins Ibalpha and VI on the risk for coronary heart disease events in postmenopausal women taking hormone therapy. Blood 109:1862–1869

    CAS  PubMed  Google Scholar 

  • Campo G, Miccoli M, Tebaldi M et al (2011) Genetic determinants of on-clopidogrel high platelet reactivity. Platelets 22:399–407

    CAS  PubMed  Google Scholar 

  • Catella-Lawson F, Reilly MP, Kapoor SC et al (2001) Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 345:1809–1817

    CAS  PubMed  Google Scholar 

  • Cattaneo M (2003) Inherited platelet-based bleeding disorders. J Thromb Haemost 1:1628–1636

    CAS  PubMed  Google Scholar 

  • Cattaneo M (2004) Aspirin and clopidogrel: efficacy, safety, and the issue of drug resistance. Arterioscler Thromb Vasc Biol 24:1980–1987

    CAS  PubMed  Google Scholar 

  • Cattaneo M, Cerletti C, Harrison P et al (2010) Final report of the Working Party on LTA Standardization. In: 56th annual SSC meeting of the International Society on thrombosis and haemostasis, Cairo, Egypt

    Google Scholar 

  • Cauwenberghs S, van Pampus E, Curvers J et al (2007) Hemostatic and signaling functions of transfused platelets. Transfus Med Rev 21:287–294

    PubMed  Google Scholar 

  • Centritto F, Iacoviello L, di Giuseppe R et al (2009) Dietary patterns, cardiovascular risk factors and C reactive protein in a healthy Italian population. Nutr Metab Cardiovasc Dis 19:697–706

    CAS  PubMed  Google Scholar 

  • Cerletti C, Carriero MR, de Gaetano G (1986) Platelet-aggregation response to single or paired aggregating stimuli after low-dose aspirin. N Engl J Med 314:316–318

    CAS  PubMed  Google Scholar 

  • Cerletti C, Tamburrelli C, Izzi B et al (2011) Platelet-leukocyte interactions in thrombosis. Thromb Res. 129:263–266

    Google Scholar 

  • Chu SG, Becker RC, Berger PB et al (2010) Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 8:148–156

    CAS  PubMed  Google Scholar 

  • Clappers N, van Oijen MG, Sundaresan S et al (2008) The C50T polymorphism of the cyclooxygenase-1 gene and the risk of thrombotic events during low-dose therapy with acetyl salicylic acid. Thromb Haemost 100:70–75

    CAS  PubMed  Google Scholar 

  • Coban E, Afacan B (2008) The effect of rosuvastatin treatment on the mean platelet volume in patients with uncontrolled primary dyslipidemia with hypolipidemic diet treatment. Platelets 19:111–114

    CAS  PubMed  Google Scholar 

  • Cortellaro M, Boschetti C, Cofrancesco E et al (1992) The PLAT Study: hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients. Principal results. PLAT Study Group. Progetto Lombardo Atero-Trombosi (PLAT) Study Group. Arterioscler Thromb 12:1063–1070

    CAS  PubMed  Google Scholar 

  • Crescente M, Di Castelnuovo A, Iacoviello L et al (2008a) Response variability to aspirin as assessed by platelet function analyzer (PFA-100): a systematic review. Thromb Haemost 99:14–26

    CAS  PubMed  Google Scholar 

  • Crescente M, Di Castelnuovo A, Iacoviello L et al (2008b) PFA-100 closure time to predict cardiovascular events in aspirin-treated cardiovascular patients: a metaanalysis of 19 studies comprising 3003 patients. Thromb Haemost 99:1129–1131

    CAS  PubMed  Google Scholar 

  • Crescente M, Jessen G, Momi S et al (2009) Interactions of gallic acid, resveratrol, quercetin and aspirin at the platelet cyclooxygenase-1 level. Functional and modelling studies. Thromb Haemost 102:336–346

    CAS  PubMed  Google Scholar 

  • Crescente M, Mezzasoma AM, Del Pinto M et al (2011) Incomplete inhibition of platelet function as assessed by the platelet function analyzer (PFA-100) identifies a subset of cardiovascular patients with high residual platelet response while on aspirin. Platelets 22:179–187

    CAS  PubMed  Google Scholar 

  • Curvers J, van Pampus ECM, Feijge MAH et al (2004) Decreased responsiveness and development of activation markers of platelets stored in plasma. Transfusion 44:49–58

    PubMed  Google Scholar 

  • de Gaetano G (2001) Historical overview of the role of platelets in hemostasis and thrombosis. Haematologica 86:349–356

    PubMed  Google Scholar 

  • de Gaetano G, Cerletti C (2003) Aspirin resistance: a revival of platelet aggregation tests? J Thromb Haemost 1:2048–2050

    PubMed  Google Scholar 

  • de Gaetano G, Cerletti C (2007) Platelet function, antiplatelet therapy and clinical outcomes: to test or not to test? J Thromb Haemost 5:1835–1838

    PubMed  Google Scholar 

  • de Gaetano G, Vermylen J, Donati MB et al (1974) Indomethacin and platelet aggregation in chronic glomerulonephritis: existence of non-responders. Br Med J 2:301–303

    PubMed  Google Scholar 

  • de Gaetano G, Cerletti C, Dejana E et al (1985) Pharmacology of platelet inhibition in humans. Implications of the salicylate-aspirin interaction. Circulation 72:1185–1193

    PubMed  Google Scholar 

  • de Gaetano G, Cerletti C, Iacoviello L (2002) Pharmacogenetics as a new antiplatelet strategy. In: Gresele P, Page CP, Fuster V, Vermylen J (eds) Platelets in thrombotic and non thrombotic disorders. Cambridge University Press, Cambridge, pp 964–977

    Google Scholar 

  • de Gaetano G, Cerletti C, Iacoviello L et al (2003) The epidemiological night where all patients are black: will pharmacogenetics shed some light? Thromb Res 112:273–274

    PubMed  Google Scholar 

  • de Gaetano G, Crescente M, Cerletti C (2008) Current concepts about inhibition of platelet aggregation. Platelets 19:565–570

    PubMed  Google Scholar 

  • De Luca G, Venegoni L, Iorio S et al (2010) Platelet distribution width and the extent of coronary artery disease: results from a large prospective study. Platelets 21:508–514

    PubMed  Google Scholar 

  • Della Corte A, Tamburrelli C, Crescente M et al (2012) Platelet proteome in healthy volunteers who smoke. Platelets 23:91–105

    CAS  PubMed  Google Scholar 

  • Den Dekker E, van Abel M, van der Vuurst H et al (2003) Cell-to-cell variability in the differentiation program of human megakaryocytes. Biochim Biophys Acta 1643:85–94

    Google Scholar 

  • Desai NR, Mega JL, Jiang S et al (2009) Interaction between cigarette smoking and clinical benefit of clopidogrel. J Am Coll Cardiol 53:1273–1278

    CAS  PubMed  Google Scholar 

  • Di Minno G, Silver MJ, Cerbone AM et al (1986) Trial of repeated low-dose aspirin in diabetic angiopathy. Blood 68:886–891

    Google Scholar 

  • Eikelboom JW, Hirsh J, Weitz JI et al (2002) Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 105:1650–1655

    CAS  PubMed  Google Scholar 

  • Faraday N, Becker DM, Becker LC (2007a) Pharmacogenomics of platelet responsiveness to aspirin. Pharmacogenomics 8:1413–1425

    CAS  PubMed  Google Scholar 

  • Faraday N, Yanek LR, Mathias R et al (2007b) Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation 115:2490–2496

    CAS  PubMed  Google Scholar 

  • Femia EA, Pugliano M, Podda G et al (2012) Comparison of different procedures to prepare platelet-rich plasma for studies of platelet aggregation by light transmission aggregometry. Platelets 23:7–10

    CAS  PubMed  Google Scholar 

  • Ferreira MA, Hottenga JJ, Warrington NM et al (2009) Sequence variants in three loci influence monocyte counts and erythrocyte volume. Am J Hum Genet 85:745–749

    CAS  PubMed  Google Scholar 

  • Fitzgerald R, Pirmohamed M (2011) Aspirin resistance: effect of clinical, biochemical and genetic factors. Pharmacol Ther 130:213–225

    CAS  PubMed  Google Scholar 

  • Fontana P, Dupont A, Gandrille S et al (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108:989–995

    CAS  PubMed  Google Scholar 

  • Freedman JE (2007) Heritability, platelet function, and aspirin: a link established but cause unknown. Circulation 115:2468–2470

    PubMed  Google Scholar 

  • Frelinger AL, Furman MI, Linden MD et al (2006) Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase- 2-independent pathway. Circulation 113:2888–2896

    CAS  PubMed  Google Scholar 

  • Garg SK, Amorosi EL, Karpatkin S (1971) Use of the megathrombocyte as an index of megakaryocyte number. N Engl J Med 284:11–17

    CAS  PubMed  Google Scholar 

  • Garner C, Tatu T, Reittie JE et al (2000) Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 95:342–346

    CAS  PubMed  Google Scholar 

  • Gaxiola B, Friedl W, Propping P (1984) Epinephrine-induced platelet aggregation. A twin study. Clin Genet 26:543–548

    CAS  PubMed  Google Scholar 

  • Gianfagna F, Cugino D, Santimone I et al (2012a) From candidate genes to genome-wide association studies in cardiovascular disease. Thromb Res 129(3):320–324, PMID: 22154244

    CAS  PubMed  Google Scholar 

  • Gianfagna F, Tamburrelli C, Vonhout B, Moli-family Study Investigators et al (2012b) Heritability, genetic correlation and linkage to 9p21 region of mixed platelet-leukocytes conjugates in families with and without early myocardial infarction. Nutr Metab Cardiovasc Dis. May 25. [Epub ahead of print]

    Google Scholar 

  • Giles H, Smith RE, Martin JF (1994) Platelet glycoprotein IIb–IIIa and size are increased in acute myocardial infarction. Eur J Clin Invest 24:69–72

    CAS  PubMed  Google Scholar 

  • Goodall AH, Burns P, Salles I et al (2010) Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood 116:4646–4656

    CAS  PubMed  Google Scholar 

  • Goodman T, Ferro A, Sharma P (2008) Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol 66:222–232

    PubMed  Google Scholar 

  • Gresele P, Blockmans D, Deckmyn H et al (1988) Adenylate cyclase activation determines the effect of thromboxane synthase inhibitors on platelet aggregation in vitro. Comparison of platelets from responders and nonresponders. J Pharmacol Exp Ther 246:301–307

    CAS  PubMed  Google Scholar 

  • Gresele P, Deckmyn H, Nenci GG et al (1991) Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends Pharmacol Sci 12:158–163

    CAS  PubMed  Google Scholar 

  • Guerrero JA, Rivera J, Quiroga T et al (2011) Novel loci involved in platelet function and platelet count identified by a genome-wide study performed in children. Haematologica 96:1335–1343

    PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Hiatt BL et al (2003) Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107:2908–2913

    PubMed  Google Scholar 

  • Guthikonda S, Alviar CL, Vaduganathan M et al (2008) Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. J Am Coll Cardiol 52:743–749

    CAS  PubMed  Google Scholar 

  • Hardy AR, Conley PB, Luo J et al (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560

    CAS  PubMed  Google Scholar 

  • Harismendy O, Notani D, Song X et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470:264–268

    CAS  PubMed  Google Scholar 

  • Hayward CP, Eikelboom J (2007) Platelet function testing: quality assurance. Semin Thromb Hemost 33:273–282

    CAS  PubMed  Google Scholar 

  • Hendra TJ, Oswald GA, Yudkin JS (1988) Increased mean platelet volume after acute myocardial infarction relates to diabetes and to cardiac failure. Diabetes Res Clin Pract 5:63–69

    CAS  PubMed  Google Scholar 

  • Heptinstall S, Fox SC (1983) Human blood platelet behaviour after inhibition of thromboxane synthetase. Br J Clin Pharmacol 15(Suppl 1):31S–37S

    PubMed  Google Scholar 

  • Hoffmeister KM, Felbinger TW, Falet H et al (2003) The clearance mechanism of chilled blood platelets. Cell 112:87–97

    CAS  PubMed  Google Scholar 

  • Huczek Z, Kochman J, Filipiak KJ et al (2005) Mean platelet volume on admission predicts impaired reperfusion and longterm mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. J Am Coll Cardiol 46:284–290

    PubMed  Google Scholar 

  • Iacoviello L, Bonanni A, Costanzo S et al (2007) The Moli-Sani Project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives. Ital J Public Health 4:110–118

    Google Scholar 

  • Iacoviello L, Vohnout B, Gianfagna F et al (2009) Genetic regulation of inflammation-mediated haemostasis activation: a family-based approach. J Thromb Haemost 7(Suppl 2):S710

    Google Scholar 

  • Jakubowski JA, Adler B, Thompson CB et al (1985) Influence of platelet volume on the ability of prostacyclin to inhibit platelet aggregation and the release reaction. J Lab Clin Med 105:271–276

    CAS  PubMed  Google Scholar 

  • Johnson AD (2011) The genetics of common variation affecting platelet development, function and pharmaceutical targeting. J Thromb Haemost 9(Suppl 1):246–257

    CAS  PubMed  Google Scholar 

  • Johnson AD, Yanek LR, Chen MH et al (2010) Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet 42:608–613

    CAS  PubMed  Google Scholar 

  • Jones CI, Bray S, Garner SF, Bloodomics Consortium et al (2009) A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 114:1405–1416

    CAS  PubMed  Google Scholar 

  • Kamath S, Blann AD, Lip GY (2001) Platelet activation: assessment and quantification. Eur Heart J 22:1561–1571

    CAS  PubMed  Google Scholar 

  • Karpatkin S, Khan Q, Freedman M (1978) Heterogeneity of platelet function. Correlation with platelet volume. Am J Med 64:542–546

    CAS  PubMed  Google Scholar 

  • Kathiresan S, Voight BF, Purcell S et al (2009) Genomewide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Ozeki Y, Igawa T et al (2000) Increased platelet sensitivity to collagen in individuals resistant to low-dose aspirin. Stroke 31:591–595

    CAS  PubMed  Google Scholar 

  • Kazui M, Nishiya Y, Ishizuka T et al (2010) Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 38:92–99

    CAS  PubMed  Google Scholar 

  • Knight CJ, Panesar M, Wright C et al (1997) Altered platelet function detected by flow cytometry. Effects of coronary artery disease and age. Arterioscler Thromb Vasc Biol 17:2044–2053

    CAS  PubMed  Google Scholar 

  • Kondkar AA, Bray MS, Leal SM et al (2010) VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 8:369–378

    CAS  PubMed  Google Scholar 

  • Krasopoulos G, Brister SJ, Beattie WS et al (2008) Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. Br Med J 336:195–198

    Google Scholar 

  • Kunicki TJ (2002) The influence of platelet collagen receptor polymorphisms in hemostasis and thrombotic disease. Arterioscler Thromb Vasc Biol 22:14–20

    CAS  PubMed  Google Scholar 

  • Kunicki TJ, Nugent DJ (2010) The genetics of normal platelet reactivity. Blood 116:2627–2634

    CAS  PubMed  Google Scholar 

  • Lepäntalo A, Mikkelsson J, Reséndiz JC et al (2006) Polymorphisms of COX-1 and GPVI associate with the antiplatelet effect of aspirin in coronary artery disease patients. Thromb Haemost 95:253–259

    PubMed  Google Scholar 

  • Lev EI, Solodky A, Harel N et al (2010) Treatment of aspirin-resistant patients with omega-3 fatty acids versus aspirin dose escalation. J Am Coll Cardiol 55:114–121

    CAS  PubMed  Google Scholar 

  • Lindemann JP, Kang KW, Christian JC (1977) Genetic variance of erythrocyte parameters in adult male twins. Clin Genet 12:73–76

    CAS  PubMed  Google Scholar 

  • Livio M, Del Maschio A, Cerletti C et al (1982) Indomethacin prevents the long-lasting inhibitory effect of aspirin on human platelet cyclo-oxygenase activity. Prostaglandins 23:787–796

    CAS  PubMed  Google Scholar 

  • Macchi L, Christiaens L, Brabant S et al (2002) Resistance to aspirin in vitro is associated with increased platelet sensitivity to adenosine diphosphate. Thromb Res 107:45–49

    CAS  PubMed  Google Scholar 

  • Marcucci R, Gori AM, Paniccia R et al (2007) Residual platelet reactivity is associated with clinical and laboratory characteristics in patients with ischemic heart disease undergoing PCI on dual antiplatelet therapy. Atherosclerosis 195:e217–e223

    CAS  PubMed  Google Scholar 

  • Martin JF, Bath PM, Burr ML (1991) Influence of platelet size on outcome after myocardial infarction. Lancet 338:1409–1411

    CAS  PubMed  Google Scholar 

  • Mathias RA, Kim Y, Sung H et al (2010) A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease. BMC Med Genomics 3:22

    PubMed  Google Scholar 

  • May JA, Heptinstall S, Cole AT et al (1997) Platelet responses to several agonists and combinations of agonists in whole blood: a placebo controlled comparison of the effects of a once daily dose of plain aspirin 300 mg, plain aspirin 75 mg and enteric coated aspirin 300 mg, in man. Thromb Res 88:183–192

    CAS  PubMed  Google Scholar 

  • Michelson AD, Frelinger AL 3rd, Furman MI (2006) Current options in platelet function testing. Am J Cardiol 98:4N–10N

    PubMed  Google Scholar 

  • Munnix IC, Cosemans JM, Auger JM et al (2009) Platelet response heterogeneity in thrombus formation. Thromb Haemost 102:1149–1156

    CAS  PubMed  Google Scholar 

  • Musunuru K, Post WS, Herzog W et al (2010) Association of single nucleotide polymorphisms on chromosome 9p21.3 with platelet reactivity: a potential mechanism for increased vascular disease. Circ Cardiovasc Genet 3:445–453

    CAS  PubMed  Google Scholar 

  • Nagalla S, Shaw C, Kong X et al (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117:5189–5197

    CAS  PubMed  Google Scholar 

  • Nagata Y, Yoshikawa J, Hashimoto A et al (2003) Proplatelet formation of megakaryocytes is triggered by autocrine-synthesized estradiol. Genes Dev 17:2864–2869

    CAS  PubMed  Google Scholar 

  • Neubauer H, Kaiser AF, Endres HG et al (2011) Tailored antiplatelet therapy can overcome clopidogrel and aspirin resistance–the BOchum CLopidogrel and Aspirin Plan (BOCLA-Plan) to improve antiplatelet therapy. BMC Med 9:3

    CAS  PubMed  Google Scholar 

  • Nurden A, Nurden P (2011) Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 9(Suppl 1):76–91

    CAS  PubMed  Google Scholar 

  • O’Brien JR (1968) Effects of salicylates on human platelets. Lancet 1:779–783

    PubMed  Google Scholar 

  • O’Donnell CJ, Larson MG, Feng D, Framingham Heart Study et al (2001) Genetic and environmental contributions to platelet aggregation. The Framingham Heart Study. Circulation 103:3051–3056

    PubMed  Google Scholar 

  • Ohmori T, Yatomi Y, Nonaka T et al (2006) Aspirin resistance detected with aggregometry cannot be explained by cyclooxygenase activity: involvement of other signaling pathway(s) in cardiovascular events of aspirin-treated patients. J Thromb Haemost 4:1271–1278

    CAS  PubMed  Google Scholar 

  • Patrignani P, Filabozzi P, Patrono C (1982) Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 69:1366–1372

    CAS  PubMed  Google Scholar 

  • Patrono C (2003) Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost 1:1710–1713

    CAS  PubMed  Google Scholar 

  • Peace AJ, Tedesco AF, Foley DP et al (2008) Dual antiplatelet therapy unmasks distinct platelet reactivity in patients with coronary artery disease. J Thromb Haemost 6:2027–2034

    CAS  PubMed  Google Scholar 

  • Quick AJ (1966) Salicylates and bleeding: the aspirin tolerance test. Am J Med Sci 252:265–269

    CAS  PubMed  Google Scholar 

  • Quinn MJ, Topol EJ (2001) Common variations in platelet glycoproteins: pharmacogenomic implications. Pharmacogenomics 2:341–352

    CAS  PubMed  Google Scholar 

  • Rao GH, Reddy RK, White JG (1981) Low dose aspirin, platelet function and prostaglandin synthesis: influence of epinephrine and alpha adrenergic blockade. Prostaglandins Med 6:485–494

    CAS  PubMed  Google Scholar 

  • Reiner AP, Carlson CS, Thyagarajan B et al (2008) Soluble P-selectin, SELP polymorphisms, and atherosclerotic risk in European-American and African-African young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Arterioscler Thromb Vasc Biol 28:1549–1555

    CAS  PubMed  Google Scholar 

  • Ren Q, Barber HK, Crawford GL et al (2007) Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 18:24–33

    CAS  PubMed  Google Scholar 

  • Reny JL, De Moerloose P, Dauzat M et al (2008) Use of the PFA-100 closure time to predict cardiovascular events in aspirin-treated cardiovascular patients: a systematic review and meta-analysis. J Thromb Haemost 6:444–450

    PubMed  Google Scholar 

  • Ridker PM, Cook NR, Lee IM et al (2005) A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med 352:1293–1304

    CAS  PubMed  Google Scholar 

  • Sacco M, Pellegrini F, Roncaglioni MC, PPP Collaborative Group et al (2003) Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care 26:3264–3272

    CAS  PubMed  Google Scholar 

  • Santilli F, Rocca B, De Cristofaro R, Lattanzio S et al (2009) Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance”. J Am Coll Cardiol 53:667–677

    CAS  PubMed  Google Scholar 

  • Santimone I, Di Castelnuovo A, De Curtis A, MOLI-SANI Project Investigators et al (2011) White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population: results from the MOLI-SANI project. Haematologica 96:1180–1188

    PubMed  Google Scholar 

  • Segal JB, Moliterno AR (2006) Platelet counts differ by sex, ethnicity, and age in the United States. Ann Epidemiol 16:123–130

    PubMed  Google Scholar 

  • Seyfert UT, Haubelt H, Vogt A et al (2007) Variables influencing Multiplate whole blood impedance platelet aggregometry and turbidimetric platelet aggregation in healthy individuals. Platelets 18:199–206

    CAS  PubMed  Google Scholar 

  • Shuldiner AR, O’Connell JR, Bliden KP et al (2009) Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. J Am Coll Cardiol 302:849–857

    CAS  Google Scholar 

  • Sikorski K, Czerwoniec A, Bujnicki JM et al (2011) STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev 22:211–219

    CAS  PubMed  Google Scholar 

  • Smith JB, Willis AL (1971) Aspirin selectively inhibits prostaglandin production in human platelets. Nat New Biol 231:235–237

    CAS  PubMed  Google Scholar 

  • Smith NM, Pathansali R, Bath PM (2002) Altered megakaryocyte-platelet-haemostatic axis in patients with acute stroke. Platelets 13:113–120

    CAS  PubMed  Google Scholar 

  • Snoep JD, Hovens MM, Eikenboom JC et al (2007) Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Arch Intern Med 167:1593–1599

    PubMed  Google Scholar 

  • Sofi F, Marcucci R, Gori AM et al (2008) Residual platelet reactivity on aspirin therapy and recurrent cardiovascular events – a meta-analysis. Int J Cardiol 128:166–171

    PubMed  Google Scholar 

  • Sofi F, Marcucci R, Gori AM et al (2010) Clopidogrel non-responsiveness and risk of cardiovascular morbidity. An updated meta-analysis. Thromb Haemost 103:841–848

    CAS  PubMed  Google Scholar 

  • Soranzo N, Spector TD, Mangino M et al (2009a) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182–1190

    CAS  PubMed  Google Scholar 

  • Soranzo N, Rendon A, Gieger C et al (2009b) A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood 113:3831–3837

    CAS  PubMed  Google Scholar 

  • Stef G, Csiszar A, Lerea K et al (2006) Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol 48:1–5

    CAS  PubMed  Google Scholar 

  • Takahashi S, Ushida M, Komine R et al (2007) Increased basal platelet activity, plasma adiponectin levels, and diabetes mellitus are associated with poor platelet responsiveness to in vitro effect of aspirin. Thromb Res 119:517–524

    CAS  PubMed  Google Scholar 

  • Taubert D, von Beckerath N, Grimberg G et al (2006) Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther 80:486–501

    CAS  PubMed  Google Scholar 

  • Thaulow E, Erikssen J, Sandvik L et al (1991) Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 84:613–617

    CAS  PubMed  Google Scholar 

  • Thompson CB, Jakubowski JA (1988) The pathophysiology and clinical relevance of platelet heterogeneity. Blood 72:1–8

    CAS  PubMed  Google Scholar 

  • Totani L, Evangelista V (2010) Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 30:2357–2361

    CAS  PubMed  Google Scholar 

  • Traglia M, Sala C, Masciullo C et al (2009) Heritability and demographic analyses in the large isolated population of Val Borbera suggest advantages in mapping complex traits genes. PLoS One 4:e7554

    PubMed  Google Scholar 

  • Turner-Stokes L, Jones D, Patterson KG et al (1991) Measurement of haematological indices of chronic rheumatic disease with two newer generation automated systems, the H1 and H6000 (Technicon). Ann Rheum Dis 50:583–587

    CAS  PubMed  Google Scholar 

  • van de Loo JC (1989) Predictive value of factors of the hemostatic system in screening procedures for coronary artery disease. Ric Clin Lab 19:333–338

    PubMed  Google Scholar 

  • van der Bom JG, Heckbert SR, Lumley T et al (2009) Platelet count and the risk for thrombosis and death in the elderly. J Thromb Haemost 7:399–405

    PubMed  Google Scholar 

  • van der Loo B, Martin JF (1999) A role for changes in platelet production in the cause of acute coronary syndromes. Arterioscler Thromb Vasc Biol 19:672–679

    PubMed  Google Scholar 

  • Vermylen J, de Gaetano G, Verstraete M (eds) (1971) Round-the-table conference on normal and modified platelet aggregation, Leuven-Brussels, 25–26 Sept 1970. Acta Medica Scandinavica Suppl 525

    Google Scholar 

  • Vohnout B, Gianfagna F, Lorenzet R, Moli-family Study Investigators et al (2011) Genetic regulation of inflammation-mediated activation of haemostasis: family based approaches in population studies. Nutr Metab Cardiovasc Dis 21:857–861

    CAS  PubMed  Google Scholar 

  • Wallentin L, James S, Storey RF et al (2010) Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376:1320–1328

    CAS  PubMed  Google Scholar 

  • Weiss HJ, Aledort LM, Kochwa S (1968) The effect of salicylates on the hemostatic properties of platelets in man. J Clin Invest 47:2169–2180

    CAS  PubMed  Google Scholar 

  • White JG (2007) Platelet pathology in carriers of the X-linked GATA-1 macrothrombocytopenia. Platelets 18:620–627

    CAS  PubMed  Google Scholar 

  • Whitfield JB, Martin NG (1985) Genetic and environmental Influences on the size and number of cells in the blood. Genet Epidemiol 2:133–144

    CAS  PubMed  Google Scholar 

  • Yee DL, Sun CW, Bergeron AL et al (2005) Aggregometry detects platelet hyperreactivity in healthy individuals. Blood 106:2723–2729

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was prepared in the frame of a research project funded by the Italian Ministry of Research (MIUR, decreto N. 1588).

Thanks are due to Maria Benedetta Donati for her constructive criticism.

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni de Gaetano M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Gaetano, G., Santimone, I., Gianfagna, F., Iacoviello, L., Cerletti, C. (2012). Variability of Platelet Indices and Function: Acquired and Genetic Factors. In: Gresele, P., Born, G., Patrono, C., Page, C. (eds) Antiplatelet Agents. Handbook of Experimental Pharmacology, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29423-5_16

Download citation

Publish with us

Policies and ethics