Skip to main content

Initialization of Nonnegative Matrix Factorization with Vertices of Convex Polytope

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

Abstract

Nonnegative Matrix Factorization (NMF) is an emerging unsupervised learning technique that has already found many applications in machine learning and multivariate nonnegative data processing. NMF problems are usually solved with an alternating minimization of a given cost function, which leads to non-convex optimization. For this approach, an initialization for the factors to be estimated plays an essential role, not only for a fast convergence rate but also for selection of the desired local minima. If the observations are modeled by the exact factorization model (consistent data), NMF can be easily obtained by finding vertices of the convex polytope determined by the observed data projected on the probability simplex. For an inconsistent case, this model can be relaxed by approximating mean localizations of the vertices. In this paper, we discuss these issues and propose the initialization algorithm based on the analysis of a geometrical structure of the observed data. This approach is demonstrated to be robust, even for moderately noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  2. Langville, A.N., Meyer, C.D., Albright, R.: Initializations for the nonnegative matrix factorization. In: Proc. of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA (2006)

    Google Scholar 

  3. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley and Sons (2009)

    Google Scholar 

  4. Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorization. Electronics Letters 42(16), 947–948 (2006)

    Article  Google Scholar 

  5. Wild, S.: Seeding non-negative matrix factorization with the spherical k-means clustering. M.Sc. Thesis, University of Colorado (2000)

    Google Scholar 

  6. Wild, S., Curry, J., Dougherty, A.: Improving non-negative matrix factorizations through structured initialization. Pattern Recognition 37(11), 2217–2232 (2004)

    Article  Google Scholar 

  7. Boutsidis, C., Gallopoulos, E.: SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recognition 41, 1350–1362 (2008)

    Article  MATH  Google Scholar 

  8. Kim, Y.D., Choi, S.: A method of initialization for nonnegative matrix factorization. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, vol. II, pp. 537–540 (2007)

    Google Scholar 

  9. Xue, Y., Tong, C.S., Chen, Y., Chen, W.S.: Clustering-based initialization for non-negative matrix factorization. Applied Mathematics and Computation 205(2), 525–536 (2008); Special Issue on Advanced Intelligent Computing Theory and Methodology in Applied Mathematics and Computation

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

  11. Chu, M.T., Lin, M.M.: Low dimensional polytype approximation and its applications to nonnegative matrix factorization. SIAM Journal of Scientific Computing 30, 1131–1151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, F.Y., Chi, C.Y., Chan, T.H., Wang, Y.: Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions Pattern Analysis and Machine Intelligence 32(5), 875–888 (2010)

    Article  Google Scholar 

  13. Cichocki, A., Zdunek, R.: NMFLAB for Signal and Image Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zdunek, R. (2012). Initialization of Nonnegative Matrix Factorization with Vertices of Convex Polytope. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics