Skip to main content

Signal Transduction in Plant–Insect Interactions: From Membrane Potential Variations to Metabolomics

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

Upon herbivore attack plants react with a cascade of signals. Early events are represented by ion flux unbalances that eventually lead to plasma transmembrane potential (Vm) variations. These events are triggered by mechanical wounding implicated by chewing/piercing herbivores along with the injection of oral secretions (OS) containing plant response effectors and elicitors. Vm depolarization has been found to be a common event when plants interact with different biotrophs, and to vary depending on type and feeding habit of the biotroph. Here we show recent advances of internal and external signal transduction in plant-insect interactions by analyzing the differential impact of mechanical and herbivore damage on plants. Vm variations, calcium signaling, and ROS production precede the late events represented by gene expression, proteomics, and metabolomics. Transcriptomics allows to decipher genomic expression following Vm variations and signaling upon herbivory; proteomics helps to understand the biological function of expressed genes, whereas metabolomics gives feedbacks on the combined action of gene expression and protein synthesis, by showing the complexity of plant responses through synthesis of direct and indirect plant defense molecules. The practical application of modern methods starting from signal transduction to metabolic responses to insect herbivory are discussed and documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adie B, Chico JM, Rubio-Somoza I, Solano R (2007) Modulation of plant defenses by ethylene. J Plant Growth Regul 26:160–177

    CAS  Google Scholar 

  • Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler M, El Shemy HA, Mungur R et al (2009) The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiol 151:1264–1280

    PubMed  CAS  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:873–879

    Google Scholar 

  • Arimura G, Maffei ME (2010) Calcium and secondary CPK signaling in plants in response to herbivore attack. Biochem Biophys Res Commun 400:455–460

    PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabyashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    PubMed  CAS  Google Scholar 

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta Mol Cell Biol Lipids 1734:91–111

    CAS  Google Scholar 

  • Arimura GI, Ozawa R, Maffei ME (2011) Recent advances in plant early signaling in response to herbivory. Int J Mol Sci 12:3723–3739

    PubMed  CAS  Google Scholar 

  • Baldwin IT (2010) Plant volatiles. Curr Biol 20:R392–R397

    PubMed  CAS  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia 59:7–19

    CAS  Google Scholar 

  • Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60:519–531

    PubMed  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR (1996) Phytochemical diversity: adaptation or random variation? In: Romeo JT, Saunders IA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York

    Google Scholar 

  • Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact 20:1406–1420

    PubMed  CAS  Google Scholar 

  • Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–299

    PubMed  CAS  Google Scholar 

  • Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6:e1001216

    PubMed  Google Scholar 

  • Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G et al (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804

    PubMed  CAS  Google Scholar 

  • Bricchi I, Leitner M, Foti M, Mithofer A, Boland W, Maffei ME (2010) Robotic mechanical wounding (mecworm) versus herbivore-induced responses: early signaling and volatile emission in lima bean (Phaseolus lunatus L.). Planta 232:719–729

    PubMed  CAS  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21

    CAS  Google Scholar 

  • Castells E, Berhow MA, Vaughn SF, Berenbaum MR (2005) Geographic variation in alkaloid production in Conium maculatum populations experiencing differential herbivory by Agonopterix alstroemeriana. J Chem Ecol 31:1693–1709

    PubMed  CAS  Google Scholar 

  • Chen YZ, Pang QY, Dai SJ, Wang Y, Chen SX, Yan XF (2011) Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. J Plant Physiol 168:995–1008

    PubMed  CAS  Google Scholar 

  • Collins RM, Afzal M, Ward DA, Prescott MC, Sait SM, Rees HH, Tomsett A (2010) Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS ONE 5

    Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43:266–280

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    PubMed  CAS  Google Scholar 

  • Diezel C, Kessler D, Baldwin IT (2011) Pithy protection: Nicotiana attenuata’s jasmonic acid-mediated defenses are required to resist stem-boring weevil larvae. Plant Physiol 155:1936–1946

    PubMed  CAS  Google Scholar 

  • Dinkins CLP, Peterson RKD, Gibson JE, Hu Q, Weaver DK (2008) Glycoalkaloid responses of potato to Colorado potato beetle defoliation. Food Chem Toxicol 46:2832–2836

    Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    PubMed  CAS  Google Scholar 

  • Duclohier H, Alder G, Kociolek K, Leplawy MT (2003) Channel properties of template assembled alamethicin tetramers. J Pept Sci 9:776–783

    PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    CAS  Google Scholar 

  • Dugravot S, Thibout E, Abo-Ghalia A, Huignard J (2004) How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Entomol Exp Appl 113:173–179

    Google Scholar 

  • Ebel J, Mithöfer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348

    CAS  Google Scholar 

  • Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH (2007) Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol Plant Microbe Interact 20:707–716

    PubMed  CAS  Google Scholar 

  • Felton GW, Korth KL (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3:309–314

    PubMed  CAS  Google Scholar 

  • Feng ZL, Liu RS, DeAngelis DL, Bryant JP, Kielland K, Stuart Chapin F, Swihart R (2009) Plant toxicity, adaptive herbivory, and plant community dynamics. Ecosystems 12:534–547

    CAS  Google Scholar 

  • Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    PubMed  CAS  Google Scholar 

  • Ferry N, Stavroulakis S, Guan WZ, Davison GM, Bell HA, Weaver RJ, Down RE et al (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11:1985–2002

    PubMed  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    PubMed  CAS  Google Scholar 

  • Gao LL, Kamphuis LG, Kakar K, Edwards OR, Udvardi MK, Singh KB (2010) Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytol 186:980–994

    PubMed  CAS  Google Scholar 

  • Gilardoni PA, Schuck S, Jungling R, Rotter B, Baldwin IT, Bonaventure G (2010) SuperSAGE analysis of the Nicotiana attenuata transcriptome after fatty acid-amino acid elicitation (FAC): identification of early mediators of insect responses. BMC Pediatrics 10:66

    Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse C et al (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    PubMed  Google Scholar 

  • Giri AP, Wunsche H, Mitra S, Zavala JA, Muck A, Svatos A, Baldwin IT (2006) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant’s proteome. Plant Physiol 142:1621–1641

    PubMed  CAS  Google Scholar 

  • Hagel JM, Facchini PJ (2008) Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7:479–497

    CAS  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signalling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A 104:5467–5472

    PubMed  CAS  Google Scholar 

  • Heil M, Lion U, Boland W (2008) Defense-inducing volatiles: in search of the active motif. J Chem Ecol 34:601–604

    PubMed  CAS  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    PubMed  CAS  Google Scholar 

  • Hilker M, Meiners T (2010) How do plants “notice” attack by herbivorous arthropods? Biol Rev 85:267–280

    PubMed  Google Scholar 

  • Hilker M, Stein C, Schroder R, Varama M, Mumm R (2005) Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J Exp Biol 208:1849–1854

    PubMed  Google Scholar 

  • Horiuchi J-I, Muroi A, Takabayashi J, Nishioka T (2007) Exposing Arabidopsis seedlings to borneol and bornyl acetate affects root growth: specificity due to the chemical and optical structures of the compounds. J Plant Interact 2:101–104

    CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    PubMed  CAS  Google Scholar 

  • Jansen JJ, Allwood JW, Marsden-Edwards E, van der Putten WH, Goodacre R, van Dam NM (2009) Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161

    CAS  Google Scholar 

  • Kanchiswamy CN, Muroi A, Maffei ME, Yoshioka H, Sawasaki T, Arimura G (2010) Ca2+-dependent protein kinases and their substrate HsfB2a are differently involved in the heat response signaling pathway in Arabidopsis. Plant Biotechnol 27:469–473

    CAS  Google Scholar 

  • Kant MR, Baldwin IT (2007) The ecogenetics and ecogenomics of plant-herbivore interactions: rapid progress on a slippery road. Curr Opin Genet Dev 17:519–524

    PubMed  CAS  Google Scholar 

  • Klusener B, Weiler EW (1999) Pore-forming properties of elicitors of plant defense reactions and cellulolytic enzymes. FEBS Lett 459:263–266

    PubMed  CAS  Google Scholar 

  • Koo AJK, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. Proc Natl Acad Sci U S A 108:9298–9303

    PubMed  CAS  Google Scholar 

  • Kopke D, Beyaert I, Gershenzon J, Hilker M, Schmidt A (2010) Species-specific responses of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry 71:909–917

    PubMed  Google Scholar 

  • Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14:246–251

    PubMed  CAS  Google Scholar 

  • Kuzina V, Ekstrom CT, Andersen SB, Nielsen JK, Olsen CE, Bak S (2009) Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol 151:1977–1990

    PubMed  CAS  Google Scholar 

  • Lambdon PW, Hassall M (2005) How should toxic secondary metabolites be distributed between the leaves of a fast-growing plant to minimize the impact of herbivory? Funct Ecol 19:299–305

    Google Scholar 

  • Lawrence SD, Dervinis C, Novak N, Davis JM (2006) Wound and insect herbivory responsive genes in poplar. Biotechnol Lett 28:1493–1501

    PubMed  CAS  Google Scholar 

  • Liu LL, Zhang J, Zhang YF, Li YC, Xi JH, Li SY (2010) Proteomic analysis of differentially expressed proteins of Arabidopsis thaliana response to specialist herbivore Plutella xylostella. Chem Res Chin Univ 26:958–963

    CAS  Google Scholar 

  • Lühring H, Nguyen VD, Schmidt L, Roese US (2007) Caterpillar regurgitant induces pore formation in plant membranes. FEBS Lett 581:5361–5370

    PubMed  Google Scholar 

  • Macel M, van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Res 10:583–593

    CAS  Google Scholar 

  • Macias FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manage Sci 63:327–348

    CAS  Google Scholar 

  • Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631

    CAS  Google Scholar 

  • Maffei M, Bossi S (2006) Electrophysiology and plant responses to biotic stress. In: Volkov A (ed) Plant electrophysiology—theory and methods. Springer, Berlin

    Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–1762

    PubMed  CAS  Google Scholar 

  • Maffei ME, Mithofer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, Cucuzza LS et al (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140:1022–1035

    PubMed  CAS  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007a) Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12:310–316

    PubMed  CAS  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007b) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    PubMed  CAS  Google Scholar 

  • Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    PubMed  CAS  Google Scholar 

  • Maischak H, Grigoriev PA, Vogel H, Boland W, Mithofer A (2007) Oral secretions from herbivorous lepidopteran larvae exhibit ion channel-forming activities. FEBS Lett 581:898–904

    PubMed  CAS  Google Scholar 

  • Maserti BE, Del Carratore R, la Croce CM, Podda A, Migheli Q, Froelicher Y, Luro F et al (2011) Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. J Plant Physiol 168:392–402

    PubMed  CAS  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S et al (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci U S A 106:4048–4053

    PubMed  CAS  Google Scholar 

  • Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M, Kruger DH et al (2005) Supersage. Cell Microbiol 7:11–18

    PubMed  CAS  Google Scholar 

  • Mcainsh MR, Gray JE, Hetherington AM, Leckie CP, Ng C (2000) Ca2+ signalling in stomatal guard cells. Biochem Soc Trans 28:476–481

    PubMed  CAS  Google Scholar 

  • McLean S, Duncan AJ (2006) Pharmacological perspectives on the detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. J Chem Ecol 32:1213–1228

    PubMed  CAS  Google Scholar 

  • Meldau S, Baldwin IT, Wu JQ (2011) SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytol 189:1143–1156

    PubMed  CAS  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    PubMed  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    PubMed  Google Scholar 

  • Mithöfer A, Boland W, Maffei ME (2009a) Chemical ecology of plant-insect interactions. In: Parker J (ed) Molecular aspects of plant disease resistance. Wiley-Blackwell, Chirchester

    Google Scholar 

  • Mithöfer A, Mazars C, Maffei M (2009b) Probing spatio-temporal intracellular calcium variations in plants. In: Pfannschmidt T (ed) Plant signal transduction. Humana Press Inc., Totowa

    Google Scholar 

  • Musser RO, Farmer E, Peiffer M, Williams SA, Felton GW (2006) Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions. J Chem Ecol 32:981–992

    PubMed  CAS  Google Scholar 

  • Olson DM, Davis RF, Wackers FL, Rains GC, Potter T (2008) Plant-herbivore-carnivore interactions in cotton, Gossypium hirsutum: linking belowground and aboveground. J Chem Ecol 34:1341–1348

    PubMed  CAS  Google Scholar 

  • Onkokesung N, Galis I, von Dahl CC, Matsuoka K, Saluz HP, Baldwin IT (2010) Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. Plant Physiol 153:785–798

    PubMed  CAS  Google Scholar 

  • Oyarce P, Gurovich L (2011) Evidence for the transmission of information through electric potentials in injured avocado trees. J Plant Physiol 168:103–108

    PubMed  CAS  Google Scholar 

  • Preston CA, Laue G, Baldwin IT (2001) Methyl jasmonate is blowing in the wind, but can it act as a plant–plant airborne signal? Biochem Syst Ecol 29:1007–1023

    CAS  Google Scholar 

  • Pyatygin S, Opritov V, Vodeneev V (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291

    CAS  Google Scholar 

  • Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol Lett 14:476–483

    PubMed  Google Scholar 

  • Rasmann S, Erwin AC, Halitschke R, Agrawal AA (2011) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99:16–25

    CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    PubMed  CAS  Google Scholar 

  • Rehrig EM, Appel HM, Schultz JC (2011) Measuring ‘normalcy’ in plant gene expression after herbivore attack. Mol Ecol Res 11:294–304

    CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phypps SM, Meredith J, Chourey PS, Alborn HT et al (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899

    PubMed  CAS  Google Scholar 

  • Schuler MA (2011) P450s in plant-insect interactions. Biochim Biophys Acta 1814:36–45

    PubMed  CAS  Google Scholar 

  • Sergeant K, Renaut J (2010) Plant biotic stress and proteomics. Curr Proteomics 7:275–297

    CAS  Google Scholar 

  • Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. C R Biol 331:587–596

    PubMed  CAS  Google Scholar 

  • Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164

    PubMed  CAS  Google Scholar 

  • Singh A, Singh IK, Verma PK (2008) Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J Exp Bot 59:2379–2392

    PubMed  CAS  Google Scholar 

  • Snoeren TAL, De Jong PW, Dicke M (2007) Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J Chem Ecol 95:17–26

    CAS  Google Scholar 

  • Spiteller D, Pohnert G, Boland W (2001) Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Lett 42:1483–1485

    CAS  Google Scholar 

  • Stephens NR, Cleland RE, Van Volkenburgh E (2006) Shade-induced action potentials in Helianthus anuus L. originate primarily from the epicotyl. Plant Signaling Behav 1:15–22

    Google Scholar 

  • Stipanovic RD, Lopez JD, Dowd MK, Puckhaber LS, Duke SE (2006) Effect of racemic and (+)- and (-)-gossypol on the survival and development of Helicoverpa zea larvae. J Chem Ecol 32:959–968

    PubMed  CAS  Google Scholar 

  • Thivierge K, Prado A, Driscoll BT, Bonneil E, Thibault P, Bede JC (2010) Caterpillar- and salivary-specific modification of plant proteins. J Proteome Res 9:5887–5895

    PubMed  CAS  Google Scholar 

  • Torsten W, van Bel AJ (2008) Induction as well as suppression: how aphid saliva may exert opposite effects on plant defense. Plant Signaling Behav 3:427–430

    Google Scholar 

  • van Dam NM (2009) How plants cope with biotic interactions. Plant Biol 11:1–5

    PubMed  Google Scholar 

  • VanDoorn A, Kallenbach M, Borquez AA, Baldwin IT, Bonaventure G (2010) Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves. BMC Plant Biol 10:164

    PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene-expression. Science 270:484–487

    PubMed  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    PubMed  CAS  Google Scholar 

  • Volkov AG, Haack RA (1995) Insect-induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 37:55–60

    CAS  Google Scholar 

  • Volkov AG, Mwesigwa J (2000) Interfacial electrical phenomena in green plants: action potentials. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications. Dekker, New York

    Google Scholar 

  • Volkov AG, Lang RD, Volkova-Gugeshashvili MI (2007) Electrical signaling in Aloe vera induced by localized thermal stress. Bioelectrochemistry 71:192–197

    PubMed  CAS  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    PubMed  CAS  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant, Cell Environ 33:816–827

    Google Scholar 

  • Wei Z, Hu W, Lin QS, Cheng XY, Tong MJ, Zhu LL, Chen RZ et al (2009) Understanding rice plant resistance to the brown planthopper (Nilaparvata lugens): a proteomic approach. Proteomics 9:2798–2808

    PubMed  CAS  Google Scholar 

  • Whiteman NK, Groen SC, Chevasco D, Bear A, Beckwith N, Gregory TR, Denoux C et al (2011) Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis. Mol Ecol 20:995–1014

    PubMed  CAS  Google Scholar 

  • Winterhalter M (2000) Black lipid membranes. Curr Opin Colloid Interface Sci 5:250–255

    CAS  Google Scholar 

  • Woldemariam MG, Baldwin IT, Galis I (2011) Transcriptional regulation of plant inducible defenses against herbivores: a mini-review. J Plant Interact 6:113–119

    CAS  Google Scholar 

  • Wu JQ, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    PubMed  CAS  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    PubMed  CAS  Google Scholar 

  • Yan XF, Wang ZY, Huang L, Wang C, Hou RF, Xu ZL, Qiao XJ (2009) Research progress on electrical signals in higher plants. Prog Nat Sci 19:531–541

    Google Scholar 

  • Yoshinaga N, Aboshi T, Abe H, Nishida R, Alborn HT, Tumlinson JH, Mori N (2008) Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc Natl Acad Sci U S A 105:18058–18063

    PubMed  CAS  Google Scholar 

  • Zhang JH, Sun LW, Liu LL, Lian J, An SL, Wang X, Zhang J et al (2010) Proteomic analysis of interactions between the generalist herbivore Spodoptera exigua (Lepidoptera: Noctuidae) and Arabidopsis thaliana. Plant Mol Biol Rep 28:324–333

    CAS  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858

    PubMed  CAS  Google Scholar 

  • Zimmermann MR, Maischak H, Mithoefer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo E. Maffei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zebelo, S.A., Maffei, M.E. (2012). Signal Transduction in Plant–Insect Interactions: From Membrane Potential Variations to Metabolomics. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_6

Download citation

Publish with us

Policies and ethics