Skip to main content

Energy Efficiency in Pneumatic Production Systems: State of the Art and Future Directions

  • Conference paper
Leveraging Technology for a Sustainable World

Abstract

The energy efficiency of pneumatic and compressed air systems is an important element in the overall development of sustainable production. This paper starts with a review of energy consumption in compressed air systems and approaches for assessing system efficiency. The state of art in pneumatic device and compressed air system level energy optimisation research work is then assessed. A specific focus is placed on the consumer devices widely used in production equipment including pneumatic drives, blowers and condition monitoring approaches for electro-pneumatic systems. Based on the review, conclusions are drawn on future directions and opportunities for achieving a step change improvement in energy efficiency of pneumatic based production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Radgen, P., Blaustein, E.: Compressed Air Systems in the European Union: Energy, Emissions, Savings Potential and Policy Actions. Fraunhofer ISI, Stuttgart (2001)

    Google Scholar 

  2. Yuan, C.Y., Zhang, T., Rangarajan, A., Dornfeld, D., Ziemba, B., Whitbeck, R.: A decision-based analysis of compressed air usage patterns in automotive manufacturing. Journal of Manufacturing Systems 25(4), 293–300 (2006)

    Article  Google Scholar 

  3. Risi, J.D.: Energy savings with compressed air. Energy Engineering 92(6), 49–58 (1995)

    Google Scholar 

  4. Herrmann, C., Thiede, S.: Process chain simulation to foster energy efficiency in manufacturing. CIRP Journal of Manufacturing Science and Technology 1(4), 221–229 (2009)

    Article  Google Scholar 

  5. Gutowski, T., Dahmus, J., Thiriez, A.: Electrical energy requirements for manufacturing processes. Paper presented 13th CIRP International Conference on Life Cycle Engineering Leuven, May 31 - June 2 (2006)

    Google Scholar 

  6. Devoldere, T., Dewulf, W., Deprez, W., Willems, B., Duflou, J.R.: Improvement potential for energy consumption in discrete part production machines. In: 14th CIRP Conference on Life Cycle Engineering, Tokyo, Japan, June 11-13 (2007)

    Google Scholar 

  7. Duflou, J.R., Kellens, K., Dewulf, W.: Unit process impact assessment for discrete part manufacturing: A state of the art. CIRP Journal of Manufacturing Science and Technology (0) (2011)

    Google Scholar 

  8. Hesselbach, J., Herrmann, C., Detzer, R., Martin, L., Thiede, S., Ludemann, B.: Energy efficiency through optimised coordination of production and technical building services. In: 15th CIRP Conference on Life Cycle Engineering, Sydney, Australia (2008)

    Google Scholar 

  9. Herrmann, C., Suh, S.-H., Bogdanski, G., Zein, A., Cha, J.-M., Um, J., Jeong, S., Guzman, A.: Context-aware analysis approach to enhance industrial smart metering. In: 18th CIRP International Conference on Life Cycle Engineering, Braunschweig, Germany (2011)

    Google Scholar 

  10. Harris, P.: Characterisation and modelling of electro-pneumatic production systems. University of Dublin, Dublin (2011)

    Google Scholar 

  11. Diarra, D., Jeswiet, J., Astle, B., Gawel, D.: Energy consumption and CO 2 emissions for manufacturing. Compressed air Systems Transactions of NAMRI/SME 38, 767–773 (2010)

    Google Scholar 

  12. Gauchel, W.: Energy-saving pneumatic systems. O+P Olhydraulik und Pneumatik 50(1) (2006)

    Google Scholar 

  13. Kaya, D., Phelan, P., Chau, D., Sarac, H.I.: Energy conservation in compressed-air systems. International Journal of Energy Research 26(9), 837–849 (2002)

    Article  Google Scholar 

  14. Saidur, R., Rahim, N.A., Hasanuzzaman, M.: A review on compressed-air energy use and energy savings. Renewable and Sustainable Energy Reviews 14(4), 1135–1153 (2010)

    Article  Google Scholar 

  15. Parkkinen, J., Zenger, K.: A New Efficiency Index for Analysing and Minimising Energy Consumption in Pneumatic Systems. International Journal of Fluid Power 9(1), 45–52 (2008)

    Google Scholar 

  16. Improving Compressed Air System Performance: A Sourcebook for Industry: Compressed Air Challenge, Office of Energy Efficiency and Renewable Energy, U.S. (1998)

    Google Scholar 

  17. Energy efficient compressed air systems. Carbon Trust, London, UK

    Google Scholar 

  18. Barber, A.: Pneumatic Handbook, 8th edn., Oxford (1997)

    Google Scholar 

  19. Parkkinen, R., Lappalainen, P.: A consumption model of pneumatic systems. In: Conference Record of the IEEE Industry Applications Society Annual Meeting, pp. 1673–1677 (1991)

    Google Scholar 

  20. Cai, M., Kawashima, K., Kagawa, T.: Power Assessment of Flowing Compressed Air. Journal of Fluids Engineering 128 (March 2006)

    Google Scholar 

  21. Eret, P., Harris, C., De Lasa, T., Meskell, C., O’Donnell, G.E.: Industrial Compressed Air Usage - Two Case Studies. In: 7th International Fluid Power Conference, Aachen, Germany, March 22-24, pp. 355–366 (2010)

    Google Scholar 

  22. Cai, M., Kagawa, T., Kawashima, K.: Energy conversion mechanics and power evaluation of compressible fluid in pneumatic actuator systems. In: 37th Intersociety Energy Conversion Engineering Conference (IECEC), pp. 438–443 (2002)

    Google Scholar 

  23. Zhang, Y., Cai, M., Kagawa, T.: Study of cost and energy consumption for pneumatic actuator and electric actuator. In: 7th International Fluid Power Conference, Aachen, pp. 195–210 (2010)

    Google Scholar 

  24. Winter, C.A., Bredau, J.: From component supplier to solution provider. In: 7th International Fluid Power Conference, Aachen, pp. 203–220 (2010)

    Google Scholar 

  25. Shi, Y., Cai, M.-L.: Study on efficiency and flow characteristics of two kinds of pneumatic booster valves. In: International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), August 24-26, pp. 45–50 (2010)

    Google Scholar 

  26. Zhang, Y., Cai, M., Kong, D.: Overall Energy Efficiency of Lubricant-Injected Rotary Screw Compressors and Aftercoolers. In: Asia-Pacific Power and Energy Engineering Conference 2009, pp. 1–5 (2009)

    Google Scholar 

  27. Koyamada, K., Tamura, S., Ono, O., Cai, M., Kagawa, T.: Simulation for Energy Savings in Pneumatic System. In: Systems Modeling and Simulation, pp. 258–261. Springer, Japan (2007)

    Chapter  Google Scholar 

  28. Doll, M., Sawodny, O.: Energy Optimal Open Loop Control of Standard Pneumatic Cylinders. In: 7th International Fluid Power Conference, Aachen, pp. 259–270 (2010)

    Google Scholar 

  29. Herrmann, C., Kara, S., Thiede, S.: Dynamic life cycle costing based on lifetime prediction. International Journal of Sustainable Engineering 4(3), 224–235 (2011)

    Article  Google Scholar 

  30. Yang, A., Pu, J., Wong, C.B., Moore, P.: By-pass valve control to improve energy efficiency of pneumatic drive system. Control Engineering Practice 17(6), 623–628 (2009)

    Article  Google Scholar 

  31. Fleischer, H.: Stop oversizing pneumatic components. Machine Design 71(11), 101 (1999)

    Google Scholar 

  32. Heilala, J., Helin, K., Montonen, J.: Total cost of ownership analysis for modular final assembly systems. International Journal of Production Research 44(18), 3967–3988 (2006)

    Article  MATH  Google Scholar 

  33. Fleischer, H.: Manual of Pneumatic Systems Optimisation. McGraw-Hill, New York (1995)

    Google Scholar 

  34. Beater, P.: Pneumatic Drives: System Design, Modelling and Control. Springer, Berlin (2007)

    Google Scholar 

  35. Senoo, M., Zhang, H., Oneyama, N.: Research and development on energy saving in pneumatic system. Paper presented at 50th National Conference on Fluid Power (2005)

    Google Scholar 

  36. Otis, D.R., Al-Shaalan, T., Weiss, E.: Reducing compressed air consumption by utilising expansion energy during the actuation of a pneumatic cylinder. In: 45th National Conference on Fluid Power (1992)

    Google Scholar 

  37. Li, T.C., Wu, H.W., Kuo, M.J.: A study of gas economizing pneumatic cylinder. Journal of Physics: Conference series 48, 1227–1232 (2006)

    Article  Google Scholar 

  38. Mutoh, H., Kawakami, Y., Hriata, Y., Kawai, S.: An approach to energy conservation in pneumatic systems with meter out circuit. In: 7th JFPS International Symposium on Fluid Power, Toyama, September 15-18 (2008)

    Google Scholar 

  39. Al-Dakkan, K.A., Barth, E.J., Goldfarb, M.A.: Multi-objective sliding mode approach for the energy saving control of pneumatic servo systems. In: ASME International Mechanical Engineering Congress & Exposition, Washington, D.C., November 15-21 (2003)

    Google Scholar 

  40. Granosik, G., Borenstein, J.: Minimizing air consumption of pneumatic actuators in mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3634–3639 (2004)

    Google Scholar 

  41. Xiangrong, S., Michael, G.: Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow. Journal of Dynamic Systems, Measurement, and Control 129(3), 303–310 (2007)

    Article  Google Scholar 

  42. Al-Dakkan, K.A., Barth, E.J., Goldfarb, M.: Dynamic constraint-based energy-saving control of pneumatic servo systems. Journal of Dynamic Systems, Measurement, and Control 128, 655–662 (2006)

    Article  Google Scholar 

  43. Al-Dakkan, K.A., Goldfarb, M., Barth, E.J.: Energy saving control for pneumatic servo systems. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 284–289 (2003)

    Google Scholar 

  44. Zhu, X., Cao, J., Tao, G., Yao, B.: Energy-Saving Method of Pneumatic Position Control System Based on Seperate Control of Motion Trajectory and Pressure Trajectory. In: 7th International Fluid Power Conference, Aachen (2010)

    Google Scholar 

  45. Cai, M., Xu, W.: Self-sustained oscillation pulsed air blowing system for energy saving. Chinese Journal of Mechanical Engineering 23 (2010)

    Google Scholar 

  46. Lovrec, D., Tic, V.: Reduction in air consumption when air-blowing using an energy saving nozzle. In: 7th International Fluid Power Conference, Aachen, pp. 303–316 (2010)

    Google Scholar 

  47. Gonzalez, R.G.: Fault diagnosis of a pneumatic subsystem. In: 7th International Fluid Power Conference, Aachen, pp. 537–548 (2010)

    Google Scholar 

  48. Kambli, S.: Monitoring pneumatics makes all the difference. Machine Design 80(16), 89 (2008)

    Google Scholar 

  49. Christian, B.: Self-Monitoring pneumatic systems. Machine Design 79(8), 70 (2007)

    Google Scholar 

  50. Sanville, F.E.: Two-level compressed air systems for energy saving. In: 7th International Fluid Power Symposium, Bath, England, pp. 375–383 (1986)

    Google Scholar 

  51. Parkkinen, R.: System for producing and distributing compressed air. US Patent 7,240,692 B2 (2007)

    Google Scholar 

  52. Krichel, S.V., Sawodny, O.: Dynamic modeling of compressors illustrated by an oil-flooded twin helical screw compressor. Mechatronics 21(1), 77–84 (2011)

    Article  Google Scholar 

  53. Wang, J., Yang, L., Luo, X., Mangan, S., Derby, J.W.: Mathematical Modeling Study of Scroll Air Motors and Energy Efficiency Analysis-Part I. IEEE/ASME Transactions on Mechatronics 16(1), 112–121 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harris, P., O’Donnell, G.E., Whelan, T. (2012). Energy Efficiency in Pneumatic Production Systems: State of the Art and Future Directions. In: Dornfeld, D., Linke, B. (eds) Leveraging Technology for a Sustainable World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29069-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29069-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29068-8

  • Online ISBN: 978-3-642-29069-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics