Skip to main content

Noble Gases as Tracers of Mantle Processes and Magmatic Degassing

  • Chapter
The Noble Gases as Geochemical Tracers

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Noble gas geochemistry provides powerful tools for constraining mantle degassing through geological time. However, noble gas elemental and isotopic ratios are often disturbed by melting, magma degassing and atmospheric contamination. It is necessary to understand and quantify these shallow influences in order to obtain the noble gas elemental and isotopic ratios in the mantle. In this chapter, we present an overview of the key parameters that are necessary to derive mantle compositions. We discuss solubilities in silicate melts, crystal/melt partition coefficients during melting, and different models for vesiculation and degassing, along with the preferred method to correct for atmospheric contamination, using neon isotopic compositions. Using selected samples from mid-ocean ridge basalts (MORB) and ocean island basalts (OIB), we give the probable mantle contents and elemental and isotopic compositions of He, Ne, Ar and Xe in the depleted mantle and in the high 3He source. These estimates cannot be reconciled with ancient depletion models for unradiogenic noble gas isotopic compositions, found in some oceanic island basalts, which are best explained by relatively undegassed sources deep in the mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarède F (2008) Rogue mantle helium and neon. Science 319:943–945

    Google Scholar 

  • Allard P, Jean-Baptiste P, D’Alessandro W, Parello F, Parisi B, Flehoc C (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth Planet Sci Lett 149:501–516

    Google Scholar 

  • Allègre CJ (1987) Isotope geodynamics. Earth Planet Sci Lett 86:175–203

    Google Scholar 

  • Allègre CJ, Moreira M, Staudacher T (1995) 4He/3He dispersion and mantle convection. Geophys Res Lett 22(17):2325–2328

    Google Scholar 

  • Anderson DL (1998) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc Natl Acad Sci USA 95:9087–9092

    Google Scholar 

  • Aubaud C, Pineau F, Jambon A, Javoy M (2004) Kinetic disequilibrium of C, He, Ar and carbon isotopes during degassing of mid-ocean ridge basalts. Earth Planet Sci Lett 222:391–406

    Google Scholar 

  • Bach W, Niedermann S (1998) Atmospheric noble gases in volcanic glasses from the southern Lau basin: origin from the subducting slab? Earth Planet Sci Lett 160:298–309

    Google Scholar 

  • Ballentine CJ (1997) Resolving the mantle He/Ne and crustal 21Ne/22Ne in well gases. Earth Planet Sci Lett 152(1–4):233–250

    Google Scholar 

  • Ballentine C, Barfod D (2000) The origin of air-like noble gases in MORB and OIB. Earth Planet Sci Lett 180:39–48

    Google Scholar 

  • Bianchi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297:379–386

    Google Scholar 

  • Black DC (1972) On the origins of trapped helium, neon and argon isotopic variations in meteorites—I. Gas-rich meteorites, lunar soil and breccia. Geochim Cosmochim Acta 36(3):347–375

    Google Scholar 

  • Broadhurst CL, Drake MJ, Hagee BE, Bernatowicz TJ (1990) Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids. Geochim Cosmochim Acta 54:299–309

    Google Scholar 

  • Broadhurst CL, Drake MJ, Hagee BE, Bernatowicz TJ (1992) Solubility and partitioning of Ne, Ar, Kr, and Xe in minerals and synthetic basaltic melts. Geochim Cosmochim Acta 56:709–723

    Google Scholar 

  • Brooker RA, Zu Z, Blundy JD, Kelley SP, Allan NL, Wood BJ, Chamorro EM, Wartho JA, Purton JA (2003) The ‘Zero charge’ partitioning behaviour of noble gases during mantle melting. Nature 423:738–741

    Google Scholar 

  • Burnard P (1999a) The bubble-by-bubble volatile evolution of two mid-ocean ridge basalts. Earth Planet Sci Lett 174:199–211

    Google Scholar 

  • Burnard PG (1999b) Origin of argon-lead isotopic correlation in basalts. Science 286:871

    Google Scholar 

  • Burnard P (2004) Diffusive fractionation of noble gases and helium isotopes during mantle melting. Earth Planet Sci Lett 220(3–4):287–295

    Google Scholar 

  • Burnard PG, Farley KA (2000) Calibration of pressure-dependent sensitivity and discrimination in nier-type noble gas ion sources, G-cube, 2000GC000038

    Google Scholar 

  • Burnard PG, Stuart FM, Turner G, Oskarsson N (1994) Air contamination of basaltic magmas; implications for high 3 He/4He mantle Ar isotopic composition. J Geophys Res B, Solid Earth Planets, 99(9): 17, 709–717, 715

    Google Scholar 

  • Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of «popping rock»: implications for primordial noble gases in the earth. Science 276:568–571

    Google Scholar 

  • Burnard PG, Farley KA, Turner G (1998) Multiple fluid pulses in a Samoan harzburgite. Chem Geol 147(1–2):99–114

    Google Scholar 

  • Burnard P, Graham DW, Farley KA (2002) Mechanisms of magmatic gas loss along the southeast Indian ridge and the Amsterdam—St. Paul Plateau. Earth Planet Sci Lett 203:131–148

    Google Scholar 

  • Burnard P, Harrison D, Turner G, Nesbitt R (2003) Degassing and contamination of noble gases in mid-Atlantic ridge basalts. Geochem Geophys Geosyst 4

    Google Scholar 

  • Burnard P, Graham DW, Farley KA (2004) Fractionation of noble gases (He, Ar) during MORB mantle melting: a case study on the southeast Indian ridge. Earth Planet Sci Lett 227:457–472

    Google Scholar 

  • Cafee MW, Hudson GP, Velsko C, Huss GR, Alexander EC, Chivas R (1999) Primordial noble gases from earth’s mantle: identification of primitive volatile component. Science 285:2115–2118

    Google Scholar 

  • Carroll MR, Stolper E (1993) Noble gas solubilities in silica melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochem Cosmoch Acta 57:5039–5051

    Google Scholar 

  • Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685

    Google Scholar 

  • Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220

    Google Scholar 

  • Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Radiat Isot 27:512–522

    Google Scholar 

  • Class C, Goldstein S, Stute M, Kurz MD, Schlosser P (2005) Grand Comore island: a well-constrained “low 3He/4He” mantle plume. Earth Planet Sci Lett 233:391–409

    Google Scholar 

  • Coltice N, Ricard Y (1999) Geochemical observations and one layer mantle convection. Earth Planet Sci Lett 174:125–137

    Google Scholar 

  • Coltice N, Marty B, Yokochi R (2009) Xenon isotope constraints on the thermal evolution of the early earth. Chem Geol 266:4–9

    Google Scholar 

  • Coltice N, Moreira M, Labrosse S, Hernlund JW (2011) Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet Sci Lett 308:193–199

    Google Scholar 

  • Craig H, Clarke WB, Beg MA (1975) Excess 3He in deep water on the east Pacific rise. Earth Planet Sci Lett 26:125–132

    Google Scholar 

  • Czuppon G, Matsumoto T, Handler MR, Matsuda J-I (2009) Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbed MORB-type noble gases in the subcontinental lithospheric mantle. Chem Geol 266:19–25

    Google Scholar 

  • Czuppon G, Matsumoto T, Matsuda J-I, Everard J, Sutherland L (2010) Noble gases in anhydrous mantle xenoliths from Tasmania in comparison with other localities from eastern Australia: implications for the tectonic evolution. Earth Planet Sci Lett 299:317–327

    Google Scholar 

  • Dixon E (2003) Interpretation of helium and neon isotopic heterogeneity in Icelandic basalts. Earth Planet Sci Lett 206:83–99

    Google Scholar 

  • Dixon E, Honda M, McDougall I, Campbell I, Sigurdsson I (2000) Preservation of near-solar isotopic ratios in Icelandic basalts. Earth Planet Sci Lett 180:309–324

    Google Scholar 

  • Dymond J, Hogan L (1973) Noble gas abundance patterns in deap sea basalts—primordial gases from the mantle. Earth Planet Sci Lett 20:131

    Google Scholar 

  • Farley KA, Craig H (1994) Atmospheric argon contamination of ocean island basalt olivine phenocrysts. Geochem Cosmoch Acta 58(11):2509–2517

    Google Scholar 

  • Farley KA, Poreda RJ (1993) Mantle neon and atmospheric contamination. Earth Planet Sci Lett 114:325–339

    Google Scholar 

  • Farley KA, Maier-Reimer E, Schlosser P, Broecker WS (1995) Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general circulation model. J Geophys Res 100:3829–3839

    Google Scholar 

  • Ferrario B (1996) Chemical pumping in vacuum technology. Vacuum 47:363–370

    Google Scholar 

  • Fischer T (1971) Incorporation of Ar in east Pacific basalts. Earth Planet Sci Lett 12:321–324

    Google Scholar 

  • Furi E, Hilton DR, Halldorsson SA, Barry P, Hahm D, Fischer T, Gronvold K (2010) Apparent decoupling of the He and Ne isotope systematics of the Icelandic mantle: the role of He depletion, melt mixing, degassing fractionation and air interaction. Geochem Cosmoch Acta 74:3307–3332

    Google Scholar 

  • Gautheron C, Cartigny P, Moreira M, Harris JW, Allègre CJ (2005) Evidence for a mantle component shown by rares gases, C and N-isotopes in polycrystalline diamonds from Orapa (Botswana). Earth Planet Sci Lett 240:559–572

    Google Scholar 

  • Geist D, Fornari D, Kurz MD, Harpp KS, Soule SA, Perfit MR, Koleszar AM (2006) Submarine Fernandina: magmatism at the leading edge of the Galapagos hot spot, G3, 7(12)

    Google Scholar 

  • Georgen JE, Kurz M, Dick HJB, Lin J (2003) low 3He/4He ratios in basalt glasses from the western southwest Indian ridge (10–24°E). Earth Planet Sci Lett 206:509–528

    Google Scholar 

  • Gilfillan S, Ballentine CJ, Holland G, Blagburn D, Lollar BS, Stevens S, Schoell M, Cassidy M (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochem Cosmoch Acta 72:1174–1198

    Google Scholar 

  • Gonnermann HM, Mukhopadhyay S (2007) Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature 449:1037–1040

    Google Scholar 

  • Gonnermann HM, Mukhopadhyay S (2009) Preserving noble gases in a convecting mantle. Nature 459:560–564

    Google Scholar 

  • Graham DW, Humphris SE, Jenkins WJ, Kurz MD (1993) Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet Sci Lett 110:121–131

    Google Scholar 

  • Graham DW, Lupton JE, Spera FJ, Christie DM (2001) Upper-mantle dynamics revealed by helium isotope variations long the southeast Indian ridge. Nature 409:701–703

    Google Scholar 

  • Grand SP, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography; a snapshot of convection in the Earth. GSA Today 7(4):1–7

    Google Scholar 

  • Grimberg A, Baur H, Bochsler P, Buhler F, Burnett DS, Hays CC, Heber VS, Jurewicz AJG, Wieler R (2006) Solar wind neon from genesis: implications for the lunar noble gas record. Science 314:1133–1135

    Google Scholar 

  • Guillot B, Sarda P (2006) The effect of compression on noble gas solubility in silicate melts and consequences for degassing at mid-ocean ridges. Geochem Cosmoch Acta 70:1215–1230

    Google Scholar 

  • Hanyu T, Dunai T, Davies G, Kaneoka I, Nohda S, Uto K (2001) Noble gas study of the Reunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet Sci Lett 193:83–98

    Google Scholar 

  • Hanyu T, Tatsumi Y, Kimura J-I (2011) Constraints on the origin of the Himu reservoir from He-Ne-Ar isotope systematics. Earth Planet Sci Lett 307:377–386

    Google Scholar 

  • Harrisson D, Burnard P, Turner G (1999) Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet Sci Lett 171:199–207

    Google Scholar 

  • Harrisson D, Burnard P, Trieloff M, Turner G (2003) Resolving atmospheric contaminants in mantle noble gas analyses. Geochem Geophys Geosyst 4

    Google Scholar 

  • Heber VS, Brooker RA, Kelley SP, Wood BJ (2007) Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim Cosmochim Acta 71:1041–1061

    Google Scholar 

  • Hennecke EW, Manuel OK (1975) Noble gases in CO2 well gas, Harding County, New Mexico. Earth Planet Sci Lett 27:346–355

    Google Scholar 

  • Hilton DR, Barling J, Wheller GE (1995) Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 373:330–333

    Google Scholar 

  • Hilton DR, Grönvold K, Macpherson C, Castillo P (1999) Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet Sci Lett 173:53–60

    Google Scholar 

  • Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside–forsterite system II: applications of interface enrichment to mantle geochemistry. Geochem Cosmoch Acta 71:1281–1289

    Google Scholar 

  • Hiyagon H, Ozima M (1986) Partition of gases between olivine and basalt melt. Geochim Cosmochim Acta 50:2045–2057

    Google Scholar 

  • Hiyagon H, Ozima M, Marty B, Zashu S, Sakai H (1992) Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: constraints on the early history of the Earth. Geochim Cosmochim Acta 56:1301–13016

    Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191

    Google Scholar 

  • Holland G, Cassidy M, Ballentine CJ (2009) Meteorite Kr in earth’s mantle suggests a late accretionary source for the atmosphere. Science 326:1522–1525

    Google Scholar 

  • Honda M, Patterson DB (1999) Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses. Geochim Cosmochim Acta 63:2863–2874

    Google Scholar 

  • Honda M, Woodhead JD (2005) A primordial solar-neon enriched component in the source of EM-I-type ocean island basalts from the pitcairn seamounts, Polynesia. Earth Planet Sci Lett 236:597–612

    Google Scholar 

  • Honda M, Reynolds JH, Roedder E, Epstein S (1987) Noble gases in diamonds: occurrences of solar like helium and neon. J Geophys Res 92(B12);12507–12521

    Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague D (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151

    Google Scholar 

  • Honda M, Patterson DB, McDougall I, Falloon (1993a) Noble gases in submarine pillow basalt glasses from the Lau Basin: detection of a solar component in backarc basin basalts. Earth Planet Sci Lett 120:135–148

    Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague D (1993b) Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: a solar component in the earth. Geochim Cosmochim Acta 57:859–874

    Google Scholar 

  • Honda M, Phillips D, Harris JW, Yatsevich I (2004) Unusual noble gas composition in polycrystalline diamonds: preliminary results from the Jwaneng kimberlite, Botswana. Chem Geol 203:347–358

    Google Scholar 

  • Honda M, Phillips D, Harris JW, Matsumoto T (2011) He, Ne and Ar in peridotitic and eclogitic paragenesis diamonds from the Jwaneng kimberlite, Botswana—implications for mantle evolution and diamond formation ages. Earth Planet Sci Lett 301:43–51

    Google Scholar 

  • Hopp J, Trieloff M (2008) Helium deficit in high 3He/4He parent magmas: predegassing fractionation, not a “helium paradox”. G 3:9

    Google Scholar 

  • Hopp J, Trieloff M, Altherr R (2004) Neon isotopes in mantle rocks from the Red Sea region reveal large-scale plume-lithosphere interaction. Earth Planet Sci Lett 219:61–76

    Google Scholar 

  • Hopp J, Trieloff M, Buikin AI, Korochantseva EV, Scharz WH, Althaus T, Altherr R (2007) Heterogeneous mantle argon isotope composition in the subcontinental lithospheric mantle beneath the Red Sea region. Chem Geol 240:36–53

    Google Scholar 

  • Iacono-Marziano G, Paonita A, Rizzo A, Scaillet B, Gaillard F (2010) Noble gas solubilities in silicate melts: new experimental results and a comprehensive model of the effects of liquid composition, temperature and pressure. Chem Geol 279:145–157

    Google Scholar 

  • Jackson MG, Kurz MD, Hart SR (2009) Helium and neon isotopes in phenocrysts from Samoan lavas: evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth Planet Sci Lett 287(3–4):519–528

    Google Scholar 

  • Jambon A, Weber H, Braun O (1986) Solubility of He, Ne, Ar, Kr and Xe in a basalt melting in the range 1250–1600 °C. Geochemical implications. Geochim Cosmochim Acta 50:401–408

    Google Scholar 

  • Javoy M, Pineau F (1991) The volatiles record of a «popping» rock from the mid-Atlantic ridge at 14° N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet Sci Lett 107:598–611

    Google Scholar 

  • Jean-Baptiste P, Allard P, Coutinho R, Ferreira T, Fourre E, Queiroz G, Gaspar JL (2009) Helium isotopes in hydrothermal volcanic fluids of the Azores archipelago. Earth Planet Sci Lett 281:70–80

    Google Scholar 

  • Kaneoka I, Takaoka N (1977) Excess 129Xe and high 3He/4He ratios in olivine phenocrysts of Kapuho lava and xenolithic dunites from Hawaii. Rock Magn Paleogeophysics 4:139–143

    Google Scholar 

  • Kaneoka I, Takaoka N, Aoki K (1977) Rare gases in a phlogopite nodule and a phlogopite-bearing peridotite in South African kimberlites. Earth Planet Sci Lett 36(1):181–186

    Google Scholar 

  • Kaneoka I, Takaoka N, Upton BGJ (1986) Noble gas systematics in basalts and a dunite nodule from Réunion and Grand Comore Islands, Indian Ocean. Chem Geol 59:35–42

    Google Scholar 

  • Kunz J, Staudacher T, Allègre CJ (1998) Plutonium-fission xenon found in earth’s mantle. Science 280:877–880

    Google Scholar 

  • Kurz MD (1993) Mantle heterogeneity beneath oceanic islands: some inferences from isotopes. Philos Trans R Soc Lond A342:91–103

    Google Scholar 

  • Kurz MD, Jenkins WJ (1981) The distribution of helium in oceanic basalt glasses. Earth Planet Sci Lett 53:41–54

    Google Scholar 

  • Kurz MD, Jenkins WJ, Hart SR (1982a) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297:43–47

    Google Scholar 

  • Kurz MD, Jenkins WJ, Schilling J-G, Hart SR (1982b) Helium isotopic variation in the mantle beneath the central North Atlantic Ocean. Earth Planet Sci Lett 58:1–14

    Google Scholar 

  • Kurz MD, Jenkins WJ, Hart SR, Clague D (1983) Helium isotopic variations in volcanic rocks from Loihi seamount and the island of Hawaii. Earth Planet Sci Lett 66:388–406

    Google Scholar 

  • Kurz MD,Gurney JJ (1987) Helium isotopic variability within single diamonds from the Orapa kimberlite pipe. Earth Planet Sci Lett 86:57–68

    Google Scholar 

  • Kurz MD, Curtice J, Lott DE III, Solow A (2004a) Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaian scientific drilling project. Geochem Geophys Geosyst 5(4): 

    Google Scholar 

  • Kurz MD, Fornari D, Geist D, Curtice J, Lott D (2004) Helium and neon from the deep earth: submarine Galapagos glasses and global correlations. In: Goldschmidt conference, Copenhagen, 5–11 June 2004

    Google Scholar 

  • Kurz MD, Moreira M, Curtice J, Lott DE III, Mahoney JJ, Sinton JM (2005) Correlated helium, neon, and melt production on the super-fast spreading east Pacific rise near 17°S. Earth Planet Sci Lett 232:125–142

    Google Scholar 

  • Kurz MD, Warren JM, Curtice J (2009a) Mantle deformation and noble gases: helium and neon in oceanic mylonites. Chem Geol 266:10–18

    Google Scholar 

  • Kurz MD, Curtice J, Fornari D, Geist D, Moreira M (2009b) Primitive neon from the center of the Galapagos hotspot. Earth Planet Sci Lett 286:23–34

    Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of earth’s mantle. Nature (accepted)

    Google Scholar 

  • Lal D, Nishiizumi K, Klein J, Middleton R, Craig H (1987) Cosmogenic 10Be in zaire alluvial diamonds: Implications for 3He contents of diamonds, Nature 328:139–141

    Google Scholar 

  • Lott DEI (2001) Improvements in noble gas separation methodology: a nude cryogenic trap, G-cube, 2001GC000202

    Google Scholar 

  • Lott DE, Jenkins WJ (1984) An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev Sci Inst 55:1982–1988

    Google Scholar 

  • Lupton JE, Craig H (1975) Excess 3He in oceanic basalts: evidence for terrestrial primordial helium. Earth Planet Sci Lett 26:133–139

    Google Scholar 

  • Lux G (1987) The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with application to natural samples. Geochim Cosmochim Acta 51:1549–1560

    Google Scholar 

  • Macpherson CG, Hilton DR, Mertz DF, Dunai T (2005) Sourcesn degassing, and contamination of CO2, H2O, He, Ne and Ar in basaltic glasses from Kolbeinsey ridge, north Atlantic. Geochem Cosmoch Acta 69:5729–5746

    Google Scholar 

  • Madureira P, Moreira M, Mata J, Allègre CJ (2005) Primitive helium and neon isotopes in Terceira island (Azores archipelago). Earth Planet Sci Lett 233:429–440

    Google Scholar 

  • Mahoney JJ, Natland JH, White WM, Poreda R, Bloomer SH, Flsher RL, Baxter AN (1989) Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J Geophys Res 94(B4):4033–4052

    Google Scholar 

  • Mamyrin BZ, Tolsthikin IN, Anufriyev GS, Kamenskii IL (1969) Isotopic analysis of terrestrial helium on a magnetic resonance mass spectrometer. Geochem Int 6:517–524

    Google Scholar 

  • Marrocchi Y, Burnard P, Hamilton D, Colin A, Pujol M, Zimmermann L (2009) Neon isotopic measurements using high-resolution, multicollector noble gas mass spectrometer: HELIX-MC. Geochem Geophys Geosyst G3(10):1–8

    Google Scholar 

  • Marty B (1989) Neon and xenon isotopes in MORB: implications for the earth-atmosphere evolution. Earth Planet Sci Lett 94:45–56

    Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313–314:56–66

    Google Scholar 

  • Marty B, Lussiez P (1993) Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid oceanic ridge basalt. Chem Geol 106:1–7

    Google Scholar 

  • Marty B, Ozima M (1986) Noble gas distribution in oceanic basalts glasses. Geochim Cosmochim Acta 50:1093–1097

    Google Scholar 

  • Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145:233–248

    Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid ocean ridge basalts: assessment of shallow level fractionation and characterization of source composition. Geochem Cosmochem Acta 63:3619–3633

    Google Scholar 

  • Marty B, Zashu S, Ozima M (1983) Two noble gas components in a mid-Atlantic ridge basalt. Nature 302(5905):238–240

    Google Scholar 

  • Marty B, Trull T, Lussiez P, Basile I, Tanguy JC (1994) He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet Sci Lett 126:23–39

    Google Scholar 

  • Matsumoto T, Seta A, Matsuda JI, Takebe M, Chen Y, Arai S (2002) Helium in the archean komatiites revisited: significantly high 3He/4He ratios revealed by fractional crushing gas extraction. Earth Sci Rev 196:213–225

    Google Scholar 

  • Meibom A, Anderson DL, Sleep NH, Frei R, Page Chamberlain C, Hren MT, Wooden JL (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components? Earth Planet Sci Lett 208:197–204

    Google Scholar 

  • Miyazaki A, Hiyagon H, Siugiura N, Hirose K, Takahashi E (2004) Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the earth. Geochem Cosmoch Acta 68:387–401

    Google Scholar 

  • Moreira M (2007) Constraints on the origin of the 129Xe on earth using the tellurium double beta decay. Earth Planet Sci Lett 264

    Google Scholar 

  • Moreira M, Allègre CJ (1998) Helium–neon systematics and the structure of the mantle. Chem Geol 147:53–59

    Google Scholar 

  • Moreira M, Allègre CJ (2002) Rare gas systematics on mid Atlantic ridge (37°–40°). Earth Planet Sci Lett 198:401–416

    Google Scholar 

  • Moreira M, Raquin A (2007) Noble gas subduction in the mantle: the “subduction barrier” revisited. C R Geosci 339:937–945

    Google Scholar 

  • Moreira M, Sarda P (2000) Noble gas constraints on degassing processes. Earth Planet Sci Lett 176:375–386

    Google Scholar 

  • Moreira M, Staudacher T, Sarda P, Schilling J-G, Allègre CJ (1995) A primitive plume neon component in MORB: the Shona ridge-anomaly, south Atlantic (51–52°S). Earth Planet Sci Lett 133:367–377

    Google Scholar 

  • Moreira M, Valbracht P, Staudacher T, Allègre CJ (1996) Rare gas systematics in Red Sea ridge basalts. Geophys Res Lett 23:2453–2456

    Google Scholar 

  • Moreira M, Kunz J, Allègre CJ (1998) Rare gas systematics on popping rock: estimates of isotopic and elemental compositions in the upper mantle. Science 279:1178–1181

    Google Scholar 

  • Moreira M, Doucelance R, Dupré B, Kurz M, Allègre CJ (1999) Helium and lead isotope geochemistry in the Azores archipelago. Earth Planet Sci Lett 169:189–205

    Google Scholar 

  • Moreira M, Breddam K, Curtice J, Kurz M (2001) Solar neon in the Icelandic mantle: evidence for an undegassed lower mantle. Earth Planet Sci Lett 185:15–23

    Google Scholar 

  • Mukhopadhyay S (2011) I-Pu-Xe in OIBs and the early separation of the plume source from the MORB source mantle. Mineral Mag 75

    Google Scholar 

  • Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep mantle neon and xenon. Nature. doi:10.1038/nature11141

    Article  Google Scholar 

  • Niedermann S, Bach W (1998) Anomalously nucleogenic neon in North Chile ridge basalt glasses suggesting a previously degassed mantle source. Earth Planet Sci Lett 160:447–462

    Google Scholar 

  • Niedermann S, Bach W, Erzinger J (1997) Noble gas evidence for a lower mantle component in MORB from the southern east Pacific rise: decoupling of helium and neon isotope systematics. Geochim Cosmochim Acta 61:2697–2715

    Google Scholar 

  • Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398–411

    Google Scholar 

  • Nishio Y, Ishii T, Gamo T, Sano Y (1999) Volatile element isotopic systematics of the rodrigues triple junction Indian Ocean MORB: implications for mantle heterogeneity. Earth Planet Sci Lett 170:241–253

    Google Scholar 

  • Ozima M, Zashu S (1983) Noble gases in submarine pillow-glasses. Earth Planet Sci Lett 62:24–40

    Google Scholar 

  • Ozima M, Zashu S (1988) Solar-type Ne in zaire cubic diamonds. Geochim Cosmochim Acta 52:19–25

    Google Scholar 

  • Ozima M, Zashu S (1991) Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet Sci Lett 105:13–27

    Google Scholar 

  • Ozima M, Podozek FA, Igarashi G (1985) Terrestrial xenon isotope constraints on the early history of the earth. Nature 315:471–474

    Google Scholar 

  • Paonita A, Martelli M (2006) Magma dynamics at mid-ocean ridges by noble gas kinetic fractionation: assessment of magmatic ascent rates. Earth Planet Sci Lett 241:138–158

    Google Scholar 

  • Paonita A, Martelli M (2007) A new view of the He–Ar–CO2 degassing at mid-ocean ridges: homogeneous composition of magmas from the upper mantle. Geochem Cosmoch Acta 71:1747–1763

    Google Scholar 

  • Parai R, Mukhopadhyay S, Lassiter JC (2009) New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands. Earth Planet Sci Lett 277:253–261

    Google Scholar 

  • Parman SW, Kurz MD, Hart SR, Grove TL (2005) Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature 437:1140–1143

    Google Scholar 

  • Patterson DB, Honda M, McDougall I (1990) Atmospheric contamination: a possible source for heavy noble gases basalts from Loihi seamount, Hawaii. Geophys Res Lett 17:705–708

    Google Scholar 

  • Pedroni A, Hammerschmidt K, Friedrichsen H (1999) He, Ne, Ar, and C isotope systematics of geothermal emanations in the Lesser Antilles Islands arc. Geochem Cosmoch Acta 63:515–532

    Google Scholar 

  • Pineau F, Javoy M, Bottinga Y (1976) 13C/12C ratios of rocks and inclusions in popping rocks of the mid Atlantic ridge and their bearing on the problem of isotopic composition of deep-seated carbon. Earth Planet Sci Lett 29:413–421

    Google Scholar 

  • Pinti D (2001) Anomalous xenon in archean cherts from Pilbara Craton, Western Australia. Chem Geol 175:387–395

    Google Scholar 

  • Porcelli D, Halliday A (2001) The core as a possible source of mantle helium. Earth Planet Sci Lett 192:45–56

    Google Scholar 

  • Poreda RJ, Farley KA (1992) Rare gases in Samoan xenoliths. Earth Planet Sci Lett 113:129–144

    Google Scholar 

  • Poreda R, Radicati di Brozolo F (1984) Neon isotope variations in mid-Atlantic ridge basalts. Earth Planet Sci Lett 69:277–289

    Google Scholar 

  • Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochem Cosmoch Acta 73:6834–6846

    Google Scholar 

  • Pujol M, Marty B, Burgess R (2011) Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet Sci Lett 308:298–306

    Google Scholar 

  • Raquin A, Moreira M (2009) Air 38Ar/36Ar in the mantle: implication on the nature of the parent bodies of the earth. Earth Planet Sci Lett 287:551–558

    Google Scholar 

  • Raquin A, Moreira M, Guillon F (2008) He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274:142–150

    Google Scholar 

  • Reynolds JH (1956) High sensitivity mass spectrometer for noble gas analysis. Rev Sci Instrum 27:928–934

    Google Scholar 

  • Reynolds JH, Jeffery PM, McCrory GA, Varga PM (1978) Improved charcoal trap for rare gas mass spectrometry. Rev Sci Instrum 49:547–548

    Google Scholar 

  • Richard D, Marty B, Chaussidon M, Arndt N (1996) Helium isotopic evidence for a lower mantle component in depleted archean komatiite. Science 273:93–95

    Google Scholar 

  • Ruzié L, Moreira M (2009) Magma degassing process during plinian eruptions. J Volcanol Geoth Res (submitted)

    Google Scholar 

  • Sarda P (2004) Surface noble gas recycling to the terrestrial mantle. Earth Planet Sci Lett 228:49–63

    Google Scholar 

  • Sarda P, Graham DW (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet Sci Lett 97:268–289

    Google Scholar 

  • Sarda P, Moreira M (2002) Vesiculation and vesicle loss in mid oceanic ridge basalt glasses: He, Ne, Ar elemental fractionation and pressure influence. Geochem Cosmoch Acta 66:1449–1458

    Google Scholar 

  • Sarda P, Staudacher T, Allègre CJ (1985) 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet Sci Lett 72:357–375

    Google Scholar 

  • Sarda P, Staudacher T, Allègre CJ (1988) Neon isotopes in submarine basalts. Earth Planet Sci Lett 91:73–88

    Google Scholar 

  • Sarda P, Moreira M, Staudacher T (1998) Argon-lead isotopic correlation in mid-Atlantic ridge basalts. Science 283:666–668

    Google Scholar 

  • Sarda P, Moreira M, Staudacher T, Schilling J-G, Allègre CJ (2000) Rare gas systematics on the southernmost mid-Atlantic ridge: constraints on the lower mantle and the dupal source. J Geophys Res 105:5973–5996

    Google Scholar 

  • Schiano P, Provost A, Clocchiatti R, Faure F (2007) Transcrystalline melt migration and earth’s mantle. Science 314:970–974

    Google Scholar 

  • Schmidt BC, Keppler H (2002) Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth Planet Sci Lett 195:277–290

    Google Scholar 

  • Shaw AM, Hilton DR, Fisher TP, Walker JA, de Leew GAM (2006) Helium isotope variations in mineral separates from Costa Rica and Nicaragua: assessing crustal contributions, timescale variations and diffusion-related mechanisms. Chem Geol 230:124–139

    Google Scholar 

  • Shibata T, Takahashi E, Matsuda J-I (1998) Solubility of neon, argon, krypton, and xenon in binary and ternary silicate systems: a new view on noble gas solubility. Geochem Cosmoch Acta 62:1241–1253

    Google Scholar 

  • Staudacher T (1987) Upper mantle origin for Harding County well gases. Nature 325:605–607

    Google Scholar 

  • Staudacher T, Allègre CJ (1982) Terrestrial xenology. Earth Planet Sci Lett 60:389–406

    Google Scholar 

  • Staudacher T, Allègre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett 89:173–183

    Google Scholar 

  • Staudacher T, Allègre CJ (1989) Noble gases in glass samples from Tahiti: Teahitia, Rocard and Mehetia. Earth Planet Sci Lett 93:210–222

    Google Scholar 

  • Staudacher T, Allègre CJ (1993) Age of the second caldera of Piton de la Fournaise volcano, Réunion Island, determined by cosmic ray produced 3He and 21Ne, Earth Planet Sci Lett (in the press)

    Google Scholar 

  • Staudacher T, Kurz MD, Allègre CJ (1986) New noble-gas data on glass samples from Loihi seamount and Hualalai and on dunite samples from Loihi and Reunion Island. Chem Geol 56:193–205

    Google Scholar 

  • Staudacher T, Sarda P, Richardson SH, Allègre CJ, Sagna I, Dmitriev LV (1989) Noble gases in basalt glasses from a mid-Atlantic ridge topographic high at 14°N: geodynamic consequences. Earth Planet Sci Lett 96:119–133

    Google Scholar 

  • Staudacher T, Sarda P, Allègre CJ (1990) Noble gas systematics of Réunion Island, Indian Ocean. Chem Geol 89:1–17

    Google Scholar 

  • Stout VL, Gibbons MD (1955) Gettering of gas by titanium. J Appl Phys 26(12):1488–1492

    Google Scholar 

  • Stroncik NA, Niedermann S, Haase K (2008) Plume–ridge interaction revisited: evidence for melt mixing from He, Ne and Ar isotope and abundance systematics. Earth Planet Sci Lett 268:424–432

    Google Scholar 

  • Stuart FM, Lass-Evans S, Fitton JG, Ellam RM (2003) High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424:57–59

    Google Scholar 

  • Tolstikhin I, Hofmann AW (2005) Early crust on top of the earth’s core. Phys Earth Planet Inter 148:109–130

    Google Scholar 

  • Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem Geol 226:79–99

    Google Scholar 

  • Trieloff M, Kunz J (2005) Isotope systematics of noble gases in the earth’s mantle: possible sources of primordial isotopes and implications for mantle structure. Phys Earth Planet Inter 148:13–38

    Google Scholar 

  • Trieloff M, Kunz J, Clague DA, Harrison D, Allègre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038

    Google Scholar 

  • Trieloff M, Kunz J, Allègre CJ (2002) Noble gas systematics of the reunion mantle plume source and the origin of primordial noble gases in earth’s mantle. Earth Planet Sci Lett 200:297–313

    Google Scholar 

  • Trieloff M, Falter M, Jessberger EK (2003) The distribution of mantle and atmospheric argon in oceanic basalt glasses. Geochem Cosmoch Acta 67:1229–1245

    Google Scholar 

  • Valbracht PJ, Honda M, Matsumoto T, Matielli N, Mc Dougall I, Ragettli R, Weis D (1996) Helium, neon and argon isotope systematics in kerguelen ultramafic xenoliths implications for mantle source signature. Earth Planet Sci Lett 138:29–38

    Google Scholar 

  • van Soest MC, Hilton DR, Kreulen R (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochem Cosmoch Acta 62:3323–3335

    Google Scholar 

  • Wada N, Matsuda J-I (1998) A noble gas study of cubic diamonds from zaire: constraints on their mantle source, Geochem Cosmoch Acta 62:2335–2345

    Google Scholar 

  • Watson EB, Thomas JB, Cherniak DJ (2007) 40Ar retention in the terrestrial planets. Nature 449:299–304

    Google Scholar 

  • Wieler R (2002) Noble gases in the solar system, in noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 47:21–70

    Google Scholar 

  • Xu S, Nakai S, Wakita H, Wang X (1995) Mantle-derived noble gases in natural gases from Songliao basin, China. Geochem Cosmoch Acta 59:4675–4683

    Google Scholar 

  • Yamamoto JB, Burnard PG (2005) Solubility controlled noble gas fractionation during magmatic degassing: implications for noble gas compositions of primary melts of OIB and MORB. Geochem Cosmoch Acta 69:727–734

    Google Scholar 

  • Yamamoto J, Hirano N, Abe N, Hanyu T (2009a) Noble gas isotopic compositions of mantle xenoliths from northwestern Pacific lithosphere. Chem Geol 268:313–323

    Google Scholar 

  • Yamamoto J, Nishimura K, Sugimoto T, Takemura K, Takahata N, Sano Y (2009b) Diffusive fractionation of noble gases in mantle with magma channels: origin of low He/Ar in mantle-derived rocks. Earth Planet Sci Lett 280:167–174

    Google Scholar 

  • Yokochi R, Marty B (2004) A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett 225:77–88

    Google Scholar 

  • Yokochi R, Marty B (2006) Geochemical constraints on mantle dynamics in the hadeen. Earth Planet Sci Lett 238:17–30

    Google Scholar 

  • Zashu S, Hiyagon H (1995) Degassing mechanisms of noble gases from carbonado diamonds. Geochim Cosmochim Acta 59:1321–1328

    Google Scholar 

Download references

Acknowledgments

We thank Pete Burnard for his patience and his thoughtful review of the manuscript. MK wishes to thank Institut de Physique du Globe de Paris for support while this manuscript was completed. This is IPGP contribution N°3337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreira, M.A., Kurz, M.D. (2013). Noble Gases as Tracers of Mantle Processes and Magmatic Degassing. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_12

Download citation

Publish with us

Policies and ethics