Skip to main content

Experimental and Numerical Investigation of the Unsteady Flow around a Human Underwater Undulating Swimmer

  • Chapter
Nature-Inspired Fluid Mechanics

Abstract

Underwater undulatory swimming describes one of the fastest modes of human aquatic locomotion. The human swimmer can be considered as natural paradigm for technical segmented linkage systems used in robotics that must compensate its anatomical limitations through sophisticated kinetics. In order to reveal and evaluate such mechanisms the flow around and behind the swimmer was measured by tim-resolved particle image velocimetry (TR-2D-PIV) and simulated by computational fluid dynamics (CFD). In comparison to fish, despite of joint asymmetries the swimmers used undulatory waves characterized by very similar absolute amplitude distributions along the body but at much higher Strouhal numbers. The observed 3D-patterns revealed in the CFD helps us to newly interpret experimental findings. Both the experimental flow field as well as that obtained from CFD document the effect of flow preformation and vortex re-capturing. We propose that the use of high Strouhal numbers facilitates the re-capture of vortices unavoidable due the disadvantageous geometry of the human swimmer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arellano, R., Terrés-Nicoli, J.M., Redondo, J.M.: Fundamental hydrodynamics of swimming propulsion. In: Vilas-Boas, J.P., Alves, F., Marques, A. (eds.) Proceedings of the Xth Congress of Biomechanics and Medicine in Swimming, pp. 15–20 (2006)

    Google Scholar 

  2. Bainbridge, R.: The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. Journal of Experimental Biology 35(1), 109–133 (1958)

    Google Scholar 

  3. Batty, R.S.: Locomotion of plaice larvae. In: Symposium of the Zoological Society of London, vol. 48, pp. 53–69 (1981)

    Google Scholar 

  4. Bowyer, A.: Computing dirichlet tessellations. The Computer Journal 24, 162–166 (1981)

    Article  MathSciNet  Google Scholar 

  5. Cheng, J.Y., Blickhan, R.: Bending moment distribution along swimming fish. Journal of Theoretical Biology 168(3), 337–348 (1994)

    Article  Google Scholar 

  6. Cohen, R.C.Z., Cleary, P.W., Mason, B.R.: Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Human Movement Science (2011) (in press)

    Google Scholar 

  7. Connaboy, C., Coleman, S., Sanders, R.H.: Hydrodynamics of undulatory underwater swimming: A review. Sports Biomechanics 8(4), 360–380 (2009)

    Article  Google Scholar 

  8. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  9. Hay, J.G., Thayer, A.M.: Flow visualization of competitive swimming techniques: The tufts method. Journal of Biomechanics 22(1), 11–19 (1989)

    Article  Google Scholar 

  10. Hochstein, S., Blickhan, R.: Vortex re-capturing and kinematics in human underwater undulatory swimming. Human Movement Science 30(5), 998–1007 (2011)

    Article  Google Scholar 

  11. Hochstein, S., Blickhan, R., Reischle, K., Kunze, S., Brücker, C.: Swimming like a fish? first evidence of vortex re-capturing. In: Duarte, A., Cabri, J., Barreiros, J. (eds.) European Workshop on Movement Sciences, p. 89. Faculdade de Motricidade Humana, Lisbon (2009)

    Google Scholar 

  12. Hollander, A.P., de Groot, G., van Ingen Schenau, G.J., Toussaint, H.M., de Best, H., Peeters, W., Meulemans, A., Schreurs, A.W.: Measurement of active drag during crawl arm stroke swimming. Journal of Sports Sciences 4(1), 21–30 (1986)

    Article  Google Scholar 

  13. Hunt, J.C.R., Wray, A., Moin, P.: Eddies, stream and convergence zones in turbulent flows. In: 2. Proceedings of the 1988 Summer Program, pp. 193–208. National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA (1988)

    Google Scholar 

  14. Lauder, G., Tytell, E.: Hydrodynamics of undulatory propulsion. In: Fish Biomechanics, vol. 23, pp. 425–468. Elsevier (2005)

    Google Scholar 

  15. Liao, J.C.: Swimming in needlefish (belonidae): anguilliform locomotion with fins. Journal of Experimental Biology 205(18), 2875–2884 (2002)

    Google Scholar 

  16. Lighthill, M.J.: Mathematical biofluiddynamics. SIAM Pub., Philadelphia (1975)

    Book  MATH  Google Scholar 

  17. Matsuuchi, K., Miwa, T., Nomura, T., Sakakibara, J., Shintani, H., Ungerechts, B.E.: Unsteady flow field around a human hand and propulsive force in swimming. Journal of Biomechanics 42(1), 42–47 (2009)

    Article  Google Scholar 

  18. Matsuuchi, K., Muramatsu, Y.: Investigation of the unsteady mechanism in the generation of propulsive force while swimming using a synchronized flow visualization and motion analysis system. In: Klika, V. (ed.) Biomechanics in Applications, pp. 389–408. InTech (2011)

    Google Scholar 

  19. Miwa, T., Matsuuchi, K., Shintani, H., Kamata, E., Nomura, T.: Unsteady flow measurement of dolphin kicking wake in sagittal plane using 2c-piv. In: Vilas-Boas, J.P., Alves, F., Marques, A. (eds.) Proceedings of the Xth Congress of Biomechanics and Medicine in Swimming, pp. 66–68 (2006)

    Google Scholar 

  20. Müller, U.K., Smit, J., Stamhuis, E.J., Videler, J.J.: How the body contributes to the wake in undulatory fish swimming flow fileds of a swimming eel. Journal of Experimental Biology 204, 2751–2762 (2001)

    Google Scholar 

  21. Pacholak, S., Rudert, A., Brücker, C.: Numerical study of human dolphin swimming. In: Brenn, G., Holzapfel, G.A., Schanz, M., Steinbach, O. (eds.) PAMM 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics. Technische Universität Graz, Graz (2011)

    Google Scholar 

  22. Shewchuck, J.R.: A two dimensional quality mesh generator and delauney triangulator. Technical report, Carnegie Mellon University Pittsburgh (1995)

    Google Scholar 

  23. Taylor, G.K., Nudds, R.L., Thomas, A.L.R.: Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature 425(6959), 707–711 (2003)

    Article  Google Scholar 

  24. Toussaint, H.M.: An alternative fluid dynamic explanation for propulsion in front crawl swimming. In: Sanders, R., Hong, Y. (eds.) Applied Program: Application of Biomechanical Study in Swimming, pp. 96–103. The Chinese University of Hong Kong, Hong Kong (2000)

    Google Scholar 

  25. Toussaint, H.M., Beelen, A., Rodenburg, A., Sargeant, A.J., de Groot, G., Hollander, A.P., van Ingen Schenau, G.J.: Propelling efficiency of front-crawl swimming. Journal of Applied Physiology 65(6), 2506–2512 (1988)

    Google Scholar 

  26. Triantafyllou, M.S., Techet, A.H., Zhu, Q., Beal, D.N., Hover, F.S., Yue, D.K.P.: Vorticity control in fish-like propulsion and maneuvering. Integrative and Comparative Biology 42(5), 1026–1031 (2002)

    Article  Google Scholar 

  27. Vennell, R., Pease, D., Wilson, B.: Wave drag on human swimmers. Journal of Biomechanics 39, 664–671 (2006)

    Article  Google Scholar 

  28. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamcis. Harlow Pearson Education Limited (2007)

    Google Scholar 

  29. Videler, J.J.: Fish swimming movements: a study of one element of behaviour. Netherlands Journal of Zoology 34, 170–185 (1985)

    Google Scholar 

  30. Videler, J.J.: Fish swimming. Chapman and Hall, London (1993)

    Book  Google Scholar 

  31. Videler, J.J., Hess, F.: Fast continuous swimming of two pelagic predators, saithe (pollachius virens) and mackerel (scomber scombrus): A kinematic analysis. Journal of Experimental Biology 109, 209–228 (1984)

    Google Scholar 

  32. Videler, J.J., Kamermans, P.: Differences between upstroke and downstroke in swimming dolphins. Journal of Experimental Biology 119(1), 265–274 (1985)

    Google Scholar 

  33. von Loebbecke, A., Mittal, R., Mark, R., Hahn, J.: A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomechanics 8(1), 60–77 (2009)

    Article  Google Scholar 

  34. Vorontsov, A.R., Rumyantsev, V.A.: Propulsive Forces in Swimming. In: Biomechanics in Sport, 1st edn., vol. 1, pp. 184–204. Blackwell Science Ltd., Oxford (2000)

    Chapter  Google Scholar 

  35. Webb, P.W.: Steady swimming kinematics of tiger musky, an esociform accelerator, and rainbow trout, a generalist cruiser. Journal of Experimental Biology 138, 51–69 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hochstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Hochstein, S., Pacholak, S., Brücker, C., Blickhan, R. (2012). Experimental and Numerical Investigation of the Unsteady Flow around a Human Underwater Undulating Swimmer. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics