Skip to main content

Multi-channel Computations in Low-Dimensional Few-Body Physics

  • Conference paper
Mathematical Modeling and Computational Science (MMCP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7125))

Abstract

In this lecture I give a brief review of low-dimensional few-body problems recently encountered in attempting a quantitative description of ultracold atoms and molecules confined in 2D and 1D optical lattices. Multi-channel nature of these processes has required the development of special computational methods and algorithms which I discuss here as well as the most interesting results obtained with the offered computational technique and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baye, D.: Lagrange-Mesh Method for Quantum-Mechanical Problems. Phys. Stat. Sol. (b) 243, 1095–1109 (2006)

    Article  Google Scholar 

  2. Bergeman, T., Moore, M.G., Olshanii, M.: Atom-Atom Scattering under Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Confinement Induced Resonance. Phys Rev. Lett. 91, 163201-1–4 (2003)

    Google Scholar 

  3. Bloch, I., Dalibard, J., Zwerger, W.: Many-Body Physics with Ultracold Gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  Google Scholar 

  4. Capel, P., Melezhik, V.S., Baye, D.: Time-Dependent Analysis of the Breakup of Halo Nuclei. Phys. Rev. C 68, 014612-1–15 (2003)

    Google Scholar 

  5. Gelfand, I.M., Fomin, S.V.: Calculus of Variationes. Dover Publ., New York (2000)

    Google Scholar 

  6. Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach Resonances in Ultracold Gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    Article  Google Scholar 

  7. Granger, B.E., Blume, D.: Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-Dimensional Confinement. Phys. Rev. Lett. 92, 133202-1–4 (2004)

    Google Scholar 

  8. Haller, E., Mark, M.J., Hart, R., Danzl, J.G., Reichsollner, L., Melezhik, V., Schmelcher, P., Nägerl, H.-C.: Confinement-Induced Resonances in Low-Dimensional Quantum Systems. Phys Rev. Lett. 104, 153203-1–4 (2010)

    Google Scholar 

  9. Kestner, J.P., Duan, L.M.: Anharmonicity-induced resonances for ultracold atoms and their detection. New J. Phys. 12, 053016-1–6 (2010)

    Google Scholar 

  10. Kim, J.I., Melezhik, V.S., Schmelcher, P.: Suppression of Quantum Scattering in Strongly Confined Systems. Phys. Rev. Lett. 97, 193203-1–4 (2006)

    Google Scholar 

  11. Kim, J.I., Melezhik, V.S., Schmelcher, P.: Quantum Confined Scattering Beyond the s-Wave Approximation. In: Nakamura, K., Harayama, T., Takatsuka, K. (eds.) Proc. Int. Conf. on Quantum Mechanics and Chaos, September 19-20, Osaka Univ. (2006); Progr. Theor. Phys. Suppl., vol. 166, pp. 159–169 (2007)

    Google Scholar 

  12. Kohler, I., Goral, K., Julienne, P.S.: Production of Cold Molecules via Magnetically Tunable Feshbach Resonances. Rev. Mod. Phys. 78, 1311–1361 (2006)

    Article  Google Scholar 

  13. Light, J.C., Carrington, T.: Discrete-Variable Representations and their Utilizations. In: Prigogine, I., Rice, S.A. (eds.) Adv. Chem. Phys., vol. 114. John Wiley and Sons, Inc., Hoboken (2007)

    Google Scholar 

  14. Lill, J.V., Parker, G.A., Light, J.C.: Discrete Variable Representations and Sudden Models in Quantum Scattering Theory. Chem. Phys. Lett. 89, 483–489 (1982)

    Article  Google Scholar 

  15. Marchuk, G.I.: Methods of Numerical Mathematics. Sec.4.3.3. Springer, New York (1975)

    Google Scholar 

  16. Melezhik, V.S., Kim, J.I., Schmelcher, P.: Wave-Packet Dynamical Analysis of Ultracold Scattering in Cylindrical Waveguides. Phys. Rev. A76, 053611-1–15 (2007)

    Google Scholar 

  17. Melezhik, V.S., Schmelcher, P.: Quantum Dynamics of Resonant Molecule Formation in Waveguides. New J. Phys. 11, 073031-1–10 (2009)

    Google Scholar 

  18. Melezhik, V.S.: Polarization of Harmonics Generated from a Hydrogen Atom in a Strong Laser Field. Phys. Lett. A 230, 203–208 (1997)

    Article  Google Scholar 

  19. Melezhik, V.S.: A Computational Method for Quantum Dynamics of a Three-Dimensional Atom in Strong Fields. In: Schmelcher, P., Schweizer, W. (eds.) Atoms and Molecules in Strong External Fields, pp. 89–94. Plenum, New York (1998)

    Google Scholar 

  20. Melezhik, V.S., Baye, D.: Nonperturbative Time-Dependent Approach to Breakup of Halo Nuclei. Phys. Rev. C 59, 3232–3239 (1999)

    Article  Google Scholar 

  21. Melezhik, V.S., Schmelcher, P.: Quantum Energy Flow in Atomic Ions Moving in Magnetic Fields. Phys. Rev. Lett. 84, 1870–1873 (2000)

    Article  Google Scholar 

  22. Melezhik, V.S., Cohen, J.S., Hu, C.Y.: Stripping and Excitation in Collisions between p and He +  ( n ≤ 3 ) Calculated by a Quantum Time-Dependent Approach with Semiclassical Trajectories. Phys. Rev. A69, 032709-1–15 (2004)

    Google Scholar 

  23. Melezhik, V.S.: New Method for Solving Multidimensional Scattering Problem. J. Comp. Phys. 92, 67–81 (1991)

    Article  MATH  Google Scholar 

  24. Melezhik, V.S., Hu, C.Y.: Ultracold Atom-Atom Collisions in Nonresonant Laser Field. Phys. Rev. Lett. 90, 083202-1–4 (2003)

    Google Scholar 

  25. Olshanii, M.: Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys Rev. Lett. 81, 938–941 (1998)

    Article  Google Scholar 

  26. Pitaevskii, L.P.: Bose-Einstein Condensates in a Laser Radiation Field. Phys. Uspekhi 49, 333–351 (2006)

    Article  Google Scholar 

  27. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge Univ. Press, Cambridge (1992)

    MATH  Google Scholar 

  28. Saeidian, S., Melezhik, V.S., Schemelcher, P.: Multichannel Atomic Scattering and Confinement-Induced Resonances in Waveguides. Phys. Rev. A77, 042721-1–15 (2008)

    Google Scholar 

  29. Wang, X.-C., Carrington, T.: Using a Nondirect Product Discrete Variable Representation for Angular Coordinates to Compute Vibrational Levels of Polyatomic Molecules. J. Chem. Phys. 19, 194109-1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melezhik, V.S. (2012). Multi-channel Computations in Low-Dimensional Few-Body Physics. In: Adam, G., Buša, J., Hnatič, M. (eds) Mathematical Modeling and Computational Science. MMCP 2011. Lecture Notes in Computer Science, vol 7125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28212-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28212-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28211-9

  • Online ISBN: 978-3-642-28212-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics