Skip to main content

Evaluation and Management of Hypertension in Children

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Hypertension is an increasingly common and important problem in children. This chapter provides a clinical approach to childhood hypertension based on current evidence. Frameworks for defining and classifying hypertension are provided in the context of two main international guidelines, produced by the American Academy of Pediatrics and European Society of Hypertension. Included are recommendations about how best to measure BP and the role of ambulatory blood pressure monitoring.

The approach to evaluating hypertension continues to evolve, reflecting changes in test accuracy and the pretest probability of secondary hypertension. Available tests and indications for ordering these are discussed in the context of presenting signs and symptoms. Both non-pharmacologic and pharmacologic therapies are covered. Dietary interventions and exercise are both utilized in all children with hypertension, but particularly in the setting of obesity. The rationale and thresholds for pharmacologic therapy are discussed, along with recommendations about the treatment of children with secondary or severe hypertension. The chapter concludes with discussion of unanswered research questions and needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Flynn J. The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol. 2013;28:1059–66.

    Article  PubMed  Google Scholar 

  2. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2013;384:766–81.

    Article  Google Scholar 

  3. Song P, Zhang Y, Yu J, et al. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 2019;173:1–10.

    Article  Google Scholar 

  4. Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.

    Article  PubMed  Google Scholar 

  5. Lurbe E, Agabiti-Rosei E, Cruickshank JK, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–920.

    Article  CAS  PubMed  Google Scholar 

  6. Lurbe E, Torro MI, Alvarez-Pitti J, Redon P, Redon J. Central blood pressure and pulse wave amplification across the spectrum of peripheral blood pressure in overweight and obese youth. J Hypertens. 2016;34:1389–95.

    Article  CAS  PubMed  Google Scholar 

  7. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2017;71:1269–324.

    Article  PubMed  CAS  Google Scholar 

  8. Williams B, Mancia G, Spiering W, et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36:2284–309.

    Article  CAS  PubMed  Google Scholar 

  9. Brady TM, Stefani-Glücksberg A, Simonetti GD. Management of high blood pressure in children: similarities and differences between US and European guidelines. Pediatr Nephrol. 2019;34:405–12.

    Article  PubMed  Google Scholar 

  10. Gidding SS, Whelton PK, Carey RM, et al. Aligning adult and pediatric blood pressure guidelines. Hypertension. 2019;73:938–43.

    Article  CAS  PubMed  Google Scholar 

  11. Lurbe E, Litwin M, Pall D, et al. Insights and implications of new blood pressure guidelines in children and adolescents. J Hypertens. 2018;36:1456–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lurbe E, Torró I, Álvarez JA, et al. Impact of ESH and AAP hypertension guidelines for children and adolescents on office and ambulatory blood pressure-based classifications. J Hypertens. 2019;37:2414–21.

    Article  CAS  PubMed  Google Scholar 

  13. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.

    Article  Google Scholar 

  14. DiBonito P, Licenziati MR, Baroni MG, et al. The American Academy of Pediatrics hypertension guidelines identify obese youth at high cardiovascular risk among individuals non-hypertensive by the European Society of Hypertension guidelines. Eur J Prev Cardiol. 2020;27:8–15.

    Article  Google Scholar 

  15. Parati G, Stergiou GS, Dolan E, Bilo G. Blood pressure variability: clinical relevance and application. J Clin Hypertens. 2018;20:1133–7

    Google Scholar 

  16. Duncombe SL, Voss C, Harris KC. Oscillometric and auscultatory blood pressure measurement methods in children: a systematic review and meta-analysis. J Hypertens. 2017;35:213–24.

    Article  CAS  PubMed  Google Scholar 

  17. Amoore JN. Oscillometric sphygmomanometers: a critical appraisal of current technology. Blood Press Monit. 2012;17:80–8.

    Article  PubMed  Google Scholar 

  18. O’Brien E, O’Malley K. Evaluation of blood pressure measuring devices with special reference to ambulatory systems. J Hypertens Suppl. 1990;8:S133–9.

    PubMed  Google Scholar 

  19. Association for the Advancement of Medical Instrumentation. Non-invasive sphygmomanometers—Clinical investigation of intermittent automated measurement type. ANSI/AAMI/ISO 81060-2:2019. Arlington: AAMI; 2019.

    Google Scholar 

  20. O’Brien E, Pickering T, Asmar R, Myers M, Parati G, et al. International protocol for validation of blood pressure measuring devices in adults. Blood Press Monit. 2002;7:3–17.

    Article  PubMed  Google Scholar 

  21. Barba G, Buck C, Bammann K, et al. IDEFICS consortium. Blood pressure reference values for European non-overweight school children: the IDEFICS study. Int J Obes. 2014;38:S48–56.

    Article  Google Scholar 

  22. Kułaga Z, Litwin M, Grajda A, Kułaga K, Gurzkowska B, et al. Oscillometric blood pressure percentiles for Polish normal-weight school-aged children and adolescents. J Hypertens. 2012;30:1942–54.

    Article  PubMed  CAS  Google Scholar 

  23. Neuhauser HK, Thamm M, Ellert U, Hense HW, Rosario AS. Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics. 2011;127:e978–88.

    Article  PubMed  Google Scholar 

  24. Juhola J, Magnussen CG, Berenson GS, et al. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the International Childhood Cardiovascular Cohort Consortium. Circulation. 2013;128:217–24.

    Article  PubMed  Google Scholar 

  25. Tirosh A, Afek A, Rudich A, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension. 2010;56:203–9.

    Article  CAS  PubMed  Google Scholar 

  26. Falkner B, Gidding SS. Is the SPRINT blood pressure treatment target of 120/80 mm Hg relevant for children? Hypertension. 2016;67:826–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hanevold CD, Faino AV, Flynn JT. Use of automated office blood pressure measurement in the evaluation of elevated blood pressures in children and adolescents. J Pediatr. 2020a;227:204–11.

    Article  PubMed  Google Scholar 

  28. Hanevold CD, Miyashita Y, Faino AV, Flynn JT. Changes in ambulatory blood pressure phenotype over time in children and adolescents with elevated blood pressures. J Pediatr. 2020b;216:37–43.e2.

    Article  PubMed  Google Scholar 

  29. Mattu GS, Heran BS, Wright JM. Comparison of the automated non-invasive oscillometric blood pressure monitor (BpTRU) with the auscultatory mercury sphygmomanometer in a paediatric population. Blood Press Monit. 2004;9:39–45.

    Article  PubMed  Google Scholar 

  30. Lurbe E, Redon J. Reproducibility and validity of ambulatory blood pressure monitoring in children. Am J Hypertens. 2002;15:69S–73S.

    Article  PubMed  Google Scholar 

  31. Wühl E, Witte K, Soergel M, et al. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20:1995–2007.

    Article  PubMed  Google Scholar 

  32. Flynn JT, Daniels SR, Hayman LL, et al. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014;63:1116–35.

    Article  CAS  PubMed  Google Scholar 

  33. Parati G, Stergiou G, O’Brien E, et al. European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359–66.

    Article  CAS  PubMed  Google Scholar 

  34. Flynn JT. Ambulatory blood pressure monitoring in children: imperfect yet essential. Pediatr Nephrol. 2011;2:2089–94.

    Article  Google Scholar 

  35. Lurbe E, Thijs L, Torro MI, et al. Sexual dimorphism in the transition from masked to sustained hypertension in healthy youths. Hypertension. 2013;62:410–4.

    Article  CAS  PubMed  Google Scholar 

  36. Lurbe E, Redon J, Kesani A, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347:797–805.

    Article  CAS  PubMed  Google Scholar 

  37. ESCAPE Trial Group, Wühl E, Trivelli A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  Google Scholar 

  38. Li Y, Thijs L, Boggia J, et al.; International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators. Blood pressure load does not add to ambulatory blood pressure level for cardiovascular risk stratification. Hypertension. 2014;63:925–933.

    Google Scholar 

  39. Flynn JT, Urbina EM. Pediatric ambulatory blood pressure monitoring: indications and interpretations. J Clin Hypertens (Greenwich). 2012;14:372–82.

    Article  Google Scholar 

  40. Burnier M, Kreutz R, Narkiewicz K, et al. Circadian variations in blood pressure and their implications for the administration of antihypertensive drugs: is dosing in the evening better than in the morning? J Hypertens. 2020;38:1396–406.

    Article  CAS  PubMed  Google Scholar 

  41. Hanevold CD. White coat hypertension in children and adolescents. Hypertension. 2019;73:24–30.

    Article  CAS  PubMed  Google Scholar 

  42. Lurbe E, Torro I, Alvarez V, et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45:493–8.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuoka S, Awazu M. Masked hypertension in children and young adults. Pediatr Nephrol. 2004;19:651–4.

    Article  PubMed  Google Scholar 

  44. Yam MC, So HK, Kwok SY, et al. Left ventricular mass of persistent masked hypertension in Hong Kong Chinese adolescents: a 4-year follow-up study. Cardiol Young. 2018;28:837–43.

    Article  PubMed  Google Scholar 

  45. Stergiou GS, Boubouchairopoulou N, Kollias A. Accuracy of automated blood pressure measure in children. Evidence, issues, and perspectives. Hypertension. 2017;69:1000–6.

    Article  CAS  PubMed  Google Scholar 

  46. Stergiou GS, Ntineri A, Kollias A, et al. Changing relationship among clinic, home, and ambulatory blood pressure with increasing age. J Am Soc Hypertens. 2015;9:544–52.

    Article  PubMed  Google Scholar 

  47. Salgado CM, Jardim PC, Viana JK, Jardim Tde S, Velasquez PP. Home blood pressure in children and adolescents: a comparison with office and ambulatory blood pressure measurements. Acta Paediatrica. 2011;100:e163–8.

    Article  PubMed  Google Scholar 

  48. Pauca AL, Wallenhaupt SL, Kon ND, Tucker WY. Does radial artery pressure accurately reflect aortic pressure? Chest. 1992;102:1193–8.

    Article  CAS  PubMed  Google Scholar 

  49. Milne L, Keehn L, Guilcher A, et al. Central aortic blood pressure from ultrasound wall-tracking of the carotid artery in children: comparison with invasive measurements and radial tonometry. Hypertension. 2015;65:1141–6.

    Article  CAS  PubMed  Google Scholar 

  50. Roman MJ, Devereux RB. Association of central and peripheral blood pressures with intermediate cardiovascular phenotypes. Hypertension. 2014;63:1148–53.

    Article  CAS  PubMed  Google Scholar 

  51. McEniery CM, Yasmin MDB, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51:1476–82.

    Article  CAS  PubMed  Google Scholar 

  52. Radchenko GD, Torbas OO, Sirenko YM. Predictors of high central blood pressure in young with isolated systolic hypertension. Vasc Health Risk Manag. 2016;12:321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saladini F, Santonastaso M, Mos L, et al. Isolated systolic hypertension of young-to-middle-age individuals implies a relatively low risk of developing hypertension needing treatment when central blood pressure is low. J Hypertens. 2011;29:1311–9.

    Article  CAS  PubMed  Google Scholar 

  54. Mynard JP, Goldsmith G, Springall G, et al. Central aortic blood pressure estimation in children and adolescents: results of the KidCoreBP study. J Hypertens. 2020;38:821–8.

    Article  CAS  PubMed  Google Scholar 

  55. O’Rourke MF, Vlachopoulos C, Graham RM. Spurious systolic hypertension in youth. Vasc Med. 2000;5:141–5.

    Article  PubMed  Google Scholar 

  56. Obrycki Ł, Feber J, Brzezińska G, Litwin M. Evolution of isolated systolic hypertension with normal central blood pressure in adolescents-prospective study. Pediatr Nephrol. 2020; https://doi.org/10.1007/s00467-020-04731-z.

  57. Palatini P, Rosei EA, Avolio A, et al. Isolated systolic hypertension in the young: a position paper endorsed by the European Society of Hypertension. J Hypertens. 2018;36:1222–36.

    Article  CAS  PubMed  Google Scholar 

  58. Grøntved A, Brage S, Møller NC, Kristensen PL, Wedderkopp N, et al. Hemodynamic variables during exercise in childhood and resting systolic blood pressure levels 6 years later in adolescence: the European Youth Heart Study. J Hum Hypertens. 2011;25:608–14.

    Article  PubMed  Google Scholar 

  59. Mahoney LT, Schieken RM, Clarke WR, Lauer RM. Left ventricular mass and exercise responses predict future blood pressure. The Muscatine Study. Hypertension. 1988;12:206–13.

    Article  CAS  PubMed  Google Scholar 

  60. Garg R, Malhotra V, Dhar U, Tripathi Y. The isometric handgrip exercise as a test for unmasking hypertension in the offsprings of hypertensive parents. J Clin Diagn Res. 2013;7:996–9.

    PubMed  PubMed Central  Google Scholar 

  61. Møller NC, Grøntved A, Wedderkopp N, et al. Cardiovascular disease risk factors and blood pressure response during exercise in healthy children and adolescents: the European Youth Heart Study. J Appl Physiol. 2010;109:1125–32.

    Article  PubMed  Google Scholar 

  62. Kavey RE, Kveselis DA, Atallah N, Smith FC. White coat hypertension in childhood: evidence for end-organ effect. J Pediatr. 2007;150:491–7.

    Article  PubMed  Google Scholar 

  63. Hacke C, Weisser B. Reference values for exercise systolic blood pressure in 12- to 17-year-old adolescents. Am J Hypertens. 2016;29:747–53.

    Article  PubMed  Google Scholar 

  64. Chen Y, Xiao H, Zhou X, et al. Accuracy of plasma free metanephrines in the diagnosis of pheochromocytoma and paraganglioma: a systematic review and meta-analysis. Endocr Pract. 2017;23:1169–77.

    Article  PubMed  Google Scholar 

  65. Baracco R, Kapur G, Mattoo T, et al. Prediction of primary vs secondary hypertension in children. J Clin Hypertens (Greenwich). 2012;14:316–21.

    Article  Google Scholar 

  66. Gomes RS, Quirino IG, Pereira RM, et al. Primary versus secondary hypertension in children followed up at an outpatient tertiary unit. Pediatr Nephrol. 2011;26:441–7.

    Article  PubMed  Google Scholar 

  67. Gupta-Malhotra M, Banker A, Shete S, et al. Essential hypertension vs. secondary hypertension among children. Am J Hypertens. 2015;28:73–80.

    Article  PubMed  Google Scholar 

  68. Larkins NG, Teixeira-Pinto A, Craig JC. A narrative review of proteinuria and albuminuria as clinical biomarkers in children. J Paediatr Child Health. 2019;55:136–42.

    Article  PubMed  Google Scholar 

  69. Adamczak M, Zeier M, Dikow R, Ritz E. Kidney and hypertension. Kidney Int Suppl. 2002;80:62–7.

    Article  Google Scholar 

  70. Schlaich MP, Socratous F, Hennebry S, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20:933–9.

    Article  PubMed  Google Scholar 

  71. van den Born BJ, Honnebier UP, Koopmans RP, van Montfrans GA. Microangiopathic hemolysis and renal failure in malignant hypertension. Hypertension. 2005;45:246–51.

    Article  PubMed  CAS  Google Scholar 

  72. Cavero T, Arjona E, Soto K, et al. Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome. Kidney Int. 2019;96:995–1004.

    Article  CAS  PubMed  Google Scholar 

  73. Sarma A, Grant F, Johnston P, et al. The yield of DMSA renal cortical scintigraphy in pediatric patients with hypertension. J Nucl Med. 2017;58(supplement 1):526.

    Google Scholar 

  74. Tullus K. Outcome of post-infectious renal scarring. Pediatr Nephrol. 2015;30:1375–7.

    Article  PubMed  Google Scholar 

  75. Dillon MJ, Ryness JM. Plasma renin activity and aldosterone concentration in children. BMJ. 1975;4:316–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol. 2005;20:961–6.

    Article  PubMed  Google Scholar 

  77. Cui Y, Tong A, Jiang J, Wang F, Li C. Liddle syndrome: clinical and genetic profiles. J Clin Hypertens (Greenwich). 2017;19:524–9.

    Article  CAS  Google Scholar 

  78. Gordon R. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8:93–102.

    Article  CAS  PubMed  Google Scholar 

  79. Morineau G, Sulmont V, Salomon R, et al. Apparent mineralocorticoid excess: report of six new cases and extensive personal experience. J Am Soc Nephrol. 2006;17:3176–84.

    Article  CAS  PubMed  Google Scholar 

  80. Rich GM, Ulick S, Cook S, et al. Glucocorticoid-remediable aldosteronism in a large kindred: clinical spectrum and diagnosis using a characteristic biochemical phenotype. Ann Int Med. 1992;116:813–20.

    Article  CAS  PubMed  Google Scholar 

  81. Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    Article  CAS  PubMed  Google Scholar 

  82. Alvarez-Madrazo S, MacKenzie SM, Davies E, et al. Common polymorphisms in the CYP11B1 and CYP11B2 genes: evidence for a digenic influence on hypertension. Hypertension. 2013;61:232–9.

    Article  CAS  PubMed  Google Scholar 

  83. Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12.

    Article  CAS  PubMed  Google Scholar 

  85. Bulsari K, Falhammar H. Clinical perspectives in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. Endocrine. 2017;55:19–36.

    Article  CAS  PubMed  Google Scholar 

  86. Aggarwal A, Rodriguez-Buritica D. Monogenic hypertension in children: a review with emphasis on genetics. Adv Chronic Kidney Dis. 2017;24:372–9.

    Article  PubMed  Google Scholar 

  87. Ferrari P, Obeyesekere VR, Li K, et al. Point mutations abolish 11β-hydroxysteroid dehydrogenase type II activity in three families with the congenital syndrome of apparent mineralocorticoid excess. Mol Cell Endocrinol. 1996;119:21–4.

    Article  CAS  PubMed  Google Scholar 

  88. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr. 2012;171:1433–9.

    Article  CAS  PubMed  Google Scholar 

  89. Ferrari P, Sansonnens A, Dick B, Frey FJ. In vivo 11beta-HSD-2 activity: variability, salt-sensitivity, and effect of licorice. Hypertension. 2001;38:1330–6.

    Article  CAS  PubMed  Google Scholar 

  90. Monder C, Stewart P, Lakshmi V, et al. Licorice inhibits corticosteroid 1lβ-dehydrogenase of rat kidney and liver: in vivo and in vitro studies. Endocrinol. 1989;125:1046–53.

    Article  CAS  Google Scholar 

  91. Shimkets RA, Warnock DG, Bositis CM, et al. Liddle’s syndrome: Heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell. 1994;79:407–14.

    Article  CAS  PubMed  Google Scholar 

  92. Schuster H, Wienker TE, Bahring S, et al. Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet. 1996;13:98–100.

    Article  CAS  PubMed  Google Scholar 

  93. Maass PG, Aydin A, Luft FC, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647–53.

    Article  CAS  PubMed  Google Scholar 

  94. Gardiner HM, Kovacevic A, van der Heijden LB, et al. Prenatal screening for major congenital heart disease: assessing performance by combining national cardiac audit with maternity data. Heart. 2014;100:375–82.

    Article  PubMed  Google Scholar 

  95. Crossland DS, Furness JC, Abu-Harb M, Sadagopan SN, Wren C. Variability of four limb blood pressure in normal neonates. Arch Dis Child Fetal Neonatal Ed. 2004;89:F325–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bhatt AB, Defaria Yeh D. Long-term outcomes in coarctation of the aorta. Heart. 2015;101:1173–5.

    Article  CAS  PubMed  Google Scholar 

  97. Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC. Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation. 1989;80:840–5.

    Article  CAS  PubMed  Google Scholar 

  98. Hager A, Kanz S, Kaemmerer H, Schreiber C, Hess J. Coarctation Long-term Assessment (COALA): significance of arterial hypertension in a cohort of 404 patients up to 27 years after surgical repair of isolated coarctation of the aorta, even in the absence of restenosis and prosthetic material. J Thorac Cardiovasc Surg. 2007;134:738–45.

    Article  PubMed  Google Scholar 

  99. O’Sullivan JJ, Derrick G, Darnell R. Prevalence of hypertension in children after early repair of coarctation of the aorta: a cohort study using casual and 24 hour blood pressure measurement. Heart. 2002;88:163–6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Alrezk R, Suarez A, Tena I, Pacak K. Update of pheochromocytoma syndromes: genetics, biochemical evaluation, and imaging. Front Endocrinol (Lausanne). 2018;9:515.

    Article  PubMed Central  Google Scholar 

  101. Kimura N, Miura Y, Nagatsu I, Nagura H. Catecholamine synthesizing enzymes in 70 cases of functioning and non-functioning phaeochromocytoma and extra-adrenal paraganglioma. Virchows Arch A Pathol Anat Histopathol. 1992;421:25–32.

    Article  CAS  PubMed  Google Scholar 

  102. van Duinen N, Steenvoorden D, Kema IP, et al. Increased urinary excretion of 3-methoxytyramine in patients with head and neck paragangliomas. J Clin Endocrinol Metab. 2010;95:209–14.

    Article  PubMed  CAS  Google Scholar 

  103. Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31:1770–86.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lenders JWM, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–75.

    Article  PubMed  Google Scholar 

  105. Jain A, Baracco R, Kapur G. Pheochromocytoma and paraganglioma-an update on diagnosis, evaluation, and management. Pediatr Nephrol. 2020;35:581–94.

    Article  PubMed  Google Scholar 

  106. Eisenhofer G, Peitzsch M. Laboratory evaluation of pheochromocytoma and paraganglioma. Clin Chem. 2014;60:1486–99.

    Article  CAS  PubMed  Google Scholar 

  107. Eisenhofer G, Goldstein DS, Sullivan P, et al. Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma methoxytyramine. J Clin Endocrinol Metab. 2005;90:2068–75.

    Article  CAS  PubMed  Google Scholar 

  108. Darr R, Kuhn M, Bode C, et al. Accuracy of recommended sampling and assay methods for the determination of plasma-free and urinary fractionated metanephrines in the diagnosis of pheochromocytoma and paraganglioma: a systematic review. Endocrine. 2017;56:495–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lenders JW, Pacak K, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287:1427–34.

    Article  CAS  PubMed  Google Scholar 

  110. Deutschbein T, Unger N, Jaeger A, et al. Influence of various confounding variables and storage conditions on metanephrine and normetanephrine levels in plasma. Clin Endocrinol (Oxf). 2010;73:153–60.

    CAS  Google Scholar 

  111. Lenders JW, Willemsen JJ, Eisenhofer G, et al. Is supine rest necessary before blood sampling for plasma metanephrines? Clin Chem. 2007;53:352–4.

    Article  CAS  PubMed  Google Scholar 

  112. Peitzsch M, Mangelis A, Eisenhofer G, Huebner A. Age-specific pediatric reference intervals for plasma free normetanephrine, metanephrine, 3-methoxytyramine and 3-O-methyldopa: Particular importance for early infancy. Clin Chim Acta. 2019;494:100–5.

    Article  CAS  PubMed  Google Scholar 

  113. Kline G, Boyd J, Leung A, Tang A, Sadrzadeh H. Very high rate of false positive biochemical results when screening for pheochromocytoma in a large, undifferentiated population with variable indications for testing. Clin Biochem. 2020;77:26–31.

    Article  CAS  PubMed  Google Scholar 

  114. Olson SW, Yoon S, Baker T, et al. Longitudinal plasma metanephrines preceding pheochromocytoma diagnosis: a retrospective case-control serum repository study. Eur J Endocrinol. 2016;174:289–95.

    Article  CAS  PubMed  Google Scholar 

  115. Weise M, Merke DP, Pacak K, Walther MM, Eisenhofer G. Utility of plasma free metanephrines for detecting childhood pheochromocytoma. J Clin Endocrinol Metab. 2002;87:1955–60.

    Article  CAS  PubMed  Google Scholar 

  116. Eisenhofer G, Goldstein DS, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. J Clin Endocrinol Metab. 2003;88:2656–66.

    Article  CAS  PubMed  Google Scholar 

  117. Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:1915–42.

    Google Scholar 

  118. Karas M, Lacourcière Y, LeBlanc AR, et al. Effect of the renin–angiotensin system or calcium channel blockade on the circadian variation of heart rate variability, blood pressure and circulating catecholamines in hypertensive patients. J Hypertens. 2005;23:1251–60.

    Article  CAS  PubMed  Google Scholar 

  119. Bouhanick B, Fauvel J, Pont F. Biochemical misdiagnosis of pheochromocytoma in patients treated with sulfasalazine. JAMA. 2010;304:1898–901.

    Article  CAS  PubMed  Google Scholar 

  120. Lenders J, Eisenhofer G, Armando I, et al. Determination of metanephrines in plasma by liquid chromatography with electrochemical detection. Clin Chem. 1993;39:97–103.

    Article  CAS  PubMed  Google Scholar 

  121. Davidson FD. Paracetamol-associated interference in an HPLC-ECD assay for urinary free metadrenalines and catecholamines. Ann Clin Biochem. 2004;41:316–20.

    Article  CAS  PubMed  Google Scholar 

  122. Raber W, Raffesberg W, Waldhausl W, Gasic S, Roden M. Exercise induces excessive normetanephrine responses in hypertensive diabetic patients. Eur J Clin Invest. 2003;33(6):480–7.

    Article  CAS  PubMed  Google Scholar 

  123. Yu R, Wei M. False positive test results for pheochromocytoma from 2000 to 2008. Exp Clin Endocrinol Diabetes. 2010;118:577–85.

    Article  CAS  PubMed  Google Scholar 

  124. de Jong WH, Eisenhofer G, Post WJ, et al. Dietary influences on plasma and urinary metanephrines: implications for diagnosis of catecholamine-producing tumors. J Clin Endocrinol Metab. 2009;94:2841–9.

    Article  PubMed  CAS  Google Scholar 

  125. Lumachi F, Tregnaghi A, Zucchetta P, et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun. 2006;27:583–7.

    Article  PubMed  Google Scholar 

  126. Taieb D, Hicks RJ, Hindie E, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46:2112–37.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Van Der Horst-Schrivers AN, Jager PL, Boezen HM, Schouten JP, Kema IP, Links TP. Iodine-123 metaiodobenzylguanidine scintigraphy in localising phaeochromocytomas – experience and meta-analysis. Anticancer Res. 2006;26:1599–604.

    Google Scholar 

  128. Chen H, Sippel RS, O’Dorisio MS, et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39:775–83.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Blake GM, Lewington VJ, Fleming JS, Zivanovic MA, Ackery DM. Modification by nifedipine of 131 I-meta-iodobenzylguanidine kinetics in malignant phaeochromocytoma. Eur J Nucl Med. 1988;14:345–8.

    CAS  PubMed  Google Scholar 

  130. Bombardieri E, Giammarile F, Aktolun C, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.

    Article  PubMed  Google Scholar 

  131. Bausch B, Wellner U, Bausch D, et al. Long-term prognosis of patients with pediatric pheochromocytoma. Endocr Relat Cancer. 2014;21:17–25.

    Article  PubMed  Google Scholar 

  132. Gafni RI, Papanicolaou DA, Nieman LK. Nighttime salivary cortisol measurement as a simple, noninvasive, outpatient screening test for Cushing’s syndrome in children and adolescents. J Pediatr. 2000;137:30–5.

    Article  CAS  PubMed  Google Scholar 

  133. Guignat L, Bertherat J. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline: commentary from a European perspective. Eur J Endocrinol. 2010;163:9–13.

    Article  CAS  PubMed  Google Scholar 

  134. Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93:1526–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ghergherehchi R, Hazhir N. Thyroid hormonal status among children with obesity. Ther Adv Endocrinol Metab. 2015;6:51–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ittermann T, Thamm M, Wallaschofski H, Rettig R, Volzke H. Serum thyroid-stimulating hormone levels are associated with blood pressure in children and adolescents. J Clin Endocrinol Metab. 2012;97:828–34.

    Article  CAS  PubMed  Google Scholar 

  137. Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scholl UI, Goh G, Stolting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45:1050–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Beckers A, Petrossians P, Hanson J, Daly AF. The causes and consequences of pituitary gigantism. Nat Rev Endocrinol. 2018;14:705–20.

    Article  CAS  PubMed  Google Scholar 

  140. Bondanelli M, Ambrosio MR, degli Uberti EC. Pathogenesis and prevalence of hypertension in acromegaly. Pituitary. 2001;4:239–49.

    Article  CAS  PubMed  Google Scholar 

  141. McKay C, Furman WL. Hypercalcemia complicating childhood malignancies. Cancer. 1993;72:256–60.

    Article  CAS  PubMed  Google Scholar 

  142. Trehan A, Cheetham T, Bailey S. Hypercalcemia in acute lymphoblastic leukemia: an overview. J Pediatr Hematol Oncol. 2009;31:424–7.

    Article  PubMed  Google Scholar 

  143. Seliem WA, Falk MC, Shadbolt B, Kent AL. Antenatal and postnatal risk factors for neonatal hypertension and infant follow-up. Pediatr Nephrol. 2007;22:2081–7.

    Article  PubMed  Google Scholar 

  144. Starr MC, Flynn JT. Neonatal hypertension: cases, causes, and clinical approach. Pediatr Nephrol. 2019;34:787–99.

    Article  PubMed  Google Scholar 

  145. Cheong JLY, Haikerwal A, Wark JD, et al. Cardiovascular health profile at age 25 years in adults born extremely preterm or extremely low birthweight. Hypertension. 2020;76:1838–46.

    Article  CAS  PubMed  Google Scholar 

  146. Singh HP, Hurley RM, Myers TF. Neonatal hypertension: incidence and risk factors. Am J Hypertens. 1992;5:51–5.

    Article  CAS  PubMed  Google Scholar 

  147. Minami N, Imai Y, Miura Y, Abe K. The mechanism responsible for hypertension in a patient with Guillain-Barré syndrome. Clin Exp Hypertens. 1995;17:607–17.

    Article  CAS  PubMed  Google Scholar 

  148. Strenger V, Kerbl R, Dornbusch HJ, et al. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr Blood Cancer. 2007;48:504–9.

    Article  PubMed  Google Scholar 

  149. McVicar M, Carman C, Chandra M, et al. Hypertension secondary to renin-secreting juxtaglomerular cell tumor: case report and review of 38 cases. Pediatr Nephrol. 1993;7:404–12.

    Article  CAS  PubMed  Google Scholar 

  150. Gump BB, Reihman J, Stewart P, et al. Blood lead (Pb) levels: a potential environmental mechanism explaining the relation between socioeconomic status and cardiovascular reactivity in children. Health Psychology. 2007;26:296–304.

    Article  PubMed  Google Scholar 

  151. Torres AD, Rai AN, Hardiek ML. Mercury intoxication and arterial hypertension: report of two patients and review of the literature. Pediatrics. 2000;105:e34.

    Article  CAS  PubMed  Google Scholar 

  152. Franks PW, Hanson RL, Knowler WC, et al. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Leiba A, Twig G, Vivante A, et al. Prehypertension among 2.19 million adolescents and future risk for end-stage renal disease. J Hypertens. 2017;35:1290–6.

    Article  CAS  PubMed  Google Scholar 

  154. Sundström J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  PubMed  Google Scholar 

  156. Sun SS, Grave GD, Siervogel RM, et al. Systolic blood pressure in childhood predicts hypertension and metabolic syndrome later in life. Pediatrics. 2007;119:237–46.

    Article  PubMed  Google Scholar 

  157. Olsen MH, Angell SY, Asma S, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet. 2016;388:2665–712.

    Article  PubMed  Google Scholar 

  158. Killian L, Simpson JM, Savis A, Rawlins D, Sinha MD. Electrocardiography is a poor screening test to detect left ventricular hypertrophy in children. Arch Dis Child. 2010;95:832–6.

    Article  PubMed  Google Scholar 

  159. Hanevold C, Waller J, Daniels S, Portman R, Sorof J. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113:328–33.

    Article  PubMed  Google Scholar 

  160. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39:903–8.

    Article  CAS  PubMed  Google Scholar 

  161. Chinali M, Emma F, Esposito C, et al. Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J Pediatr. 2016;170:193–8.

    Article  PubMed  Google Scholar 

  162. Armstrong AC, Jacobs DR Jr, Gidding SS, et al. Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol. 2014;172:350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA. Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol. 1995;76:699–701.

    Article  CAS  PubMed  Google Scholar 

  164. Assadi F. Effect of microalbuminuria lowering on regression of left ventricular hypertrophy in children and adolescents with essential hypertension. Pediatr Cardiol. 2007;28:27–33.

    Article  PubMed  Google Scholar 

  165. Kupferman JC, Paterno K, Mahgerefteh J, et al. Improvement of left ventricular mass with antihypertensive therapy in children with hypertension. Pediatr Nephrol. 2010;25:1513–8.

    Article  PubMed  Google Scholar 

  166. Seeman T, Gilik J, Vondrak K, et al. Regression of left-ventricular hypertrophy in children and adolescents with hypertension during ramipril monotherapy. Am J Hypertens. 2007;20:990–6.

    Article  CAS  PubMed  Google Scholar 

  167. He Y, Li SM, Kang MT, et al. Association between blood pressure and retinal arteriolar and venular diameters in Chinese early adolescent children, and whether the association has gender difference: a cross-sectional study. BMC Ophthalmol. 2018;18:133.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Foster BJ, Ali H, Mamber S, Polomeno RC, Mackie AS. Prevalence and severity of hypertensive retinopathy in children. Clin Pediatr (Phila). 2009;48:926–30.

    Article  Google Scholar 

  169. Williams KM, Shah AN, Morrison D, Sinha MD. Hypertensive retinopathy in severely hypertensive children: demographic, clinical, and ophthalmoscopic findings from a 30-year British cohort. J Pediatr Ophthalmol Strabismus. 2013;50:222–8.

    Article  PubMed  Google Scholar 

  170. Urbina EM. Abnormalities of vascular structure and function in pediatric hypertension. Pediatr Nephrol. 2016;31:1061–70.

    Article  PubMed  Google Scholar 

  171. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  PubMed  Google Scholar 

  172. Nambi V, Chambless L, Folsom AR, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55:1600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bots ML, Groenewegen KA, Anderson TJ, et al. Common carotid intima-media thickness measurements do not improve cardiovascular risk prediction in individuals with elevated blood pressure: the USE-IMT collaboration. Hypertension. 2014;63:1173–81.

    Article  CAS  PubMed  Google Scholar 

  174. Flynn JT. Microalbuminuria in children with primary hypertension. J Clin Hypertens (Greenwich). 2016;18:962–5.

    Article  Google Scholar 

  175. Broccoli S, Davoli AM, Bonvicini L, et al. Motivational interviewing to treat overweight children: 24-month follow-up of a randomized controlled trial. Pediatrics. 2016;137:e20151979.

    Article  Google Scholar 

  176. Davoli AM, Broccoli S, Bonvicini L, et al. Pediatrician-led motivational interviewing to treat overweight children: an RCT. Pediatrics. 2013;132:e1236.

    Article  PubMed  Google Scholar 

  177. Smart NA, Howden R, Cornelissen V, et al. Physical activity to prevent and treat hypertension: a systematic review. Med Sci Sports Exerc. 2020;52:1001–2.

    Article  PubMed  Google Scholar 

  178. Leary SD, Ness AR, Smith GD, et al. Physical activity and blood pressure in childhood: findings from a population-based study. Hypertension. 2008;51:92–8.

    Article  CAS  PubMed  Google Scholar 

  179. World Health Organization. Physical activity and young people. recommended levels of physical activity for children aged 5–17 years. 2020. Available at: http://www.who.int/dietphysicalactivity/factsheet_young_people/en/. Last accessed 23 Nov 2020.

  180. Falkner B, Lurbe E. Primordial prevention of high blood pressure in childhood: an opportunity not to be missed. Hypertension. 2020;75:1142–50.

    Article  CAS  PubMed  Google Scholar 

  181. Redón P, Grassi G, Redon J, Álvarez-Pitti J, Lurbe E. Sympathetic neural activity, metabolic parameters and cardiorespiratory fitness in obese youths. J Hypertens. 2017;5:571–7.

    Article  CAS  Google Scholar 

  182. Ruiz JR, Cavero-Redondo I, Ortega FB, et al. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br J Sports Med. 2016;50:1451–8.

    Article  PubMed  Google Scholar 

  183. Bakker EA, Sui X, Brellenthin AG, Lee DC. Physical activity and fitness for the prevention of hypertension. Curr Opin Cardiol. 2018;33:394–401.

    Article  PubMed  Google Scholar 

  184. Moore LL, Bradlee ML, Singer MR, et al. Dietary Approaches to Stop Hypertension (DASH) eating pattern and risk of elevated blood pressure in adolescent girls. Br J Nutr. 2012;14:1678–85.

    Article  CAS  Google Scholar 

  185. Niinikoski H, Jula A, Viikari J, et al. Blood pressure is lower in children and adolescents with a low-saturated-fat diet since infancy: the special Turku coronary risk factor intervention project. Hypertension. 2009;53:918–24.

    Article  CAS  PubMed  Google Scholar 

  186. Nguyen S, Choi HK, Lustig RH, Hsu CY. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J Pediatr. 2009;154:807–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang Q, Zhang Z, Kuklina EV, et al. Sodium intake and blood pressure among US children and adolescents. Pediatrics. 2012;130:611–9.

    Article  PubMed  Google Scholar 

  188. He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension. 2006;48:861–9.

    Article  CAS  PubMed  Google Scholar 

  189. Geleijnse JM, Hofman A, Witteman JC, et al. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension. 1997;29:913–7.

    Article  CAS  PubMed  Google Scholar 

  190. Boegehold MA. The effect of high salt intake on endothelial function: reduced vascular nitric oxide in the absence of hypertension. J Vasc Res. 2013;50:458–67.

    Article  CAS  PubMed  Google Scholar 

  191. Simonetti GD, Schwertz R, Klett M, et al. Determinants of blood pressure in preschool children: the role of parental smoking. Circulation. 2011;123:292–8.

    Article  PubMed  Google Scholar 

  192. Gregoski MJ, Barnes VA, Tingen MS, Harshfield GA, Treiber FA. Breathing awareness meditation and LifeSkills Training programs influence upon ambulatory blood pressure and sodium excretion among African American adolescents. J Adolesc Health. 2011;48:59–64.

    Article  PubMed  Google Scholar 

  193. Sieverdes JC, Mueller M, Gregoski MJ, et al. Effects of Hatha yoga on blood pressure, salivary α-amylase, and cortisol function among normotensive and prehypertensive youth. J Altern Complement Med. 2014;20:241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Couch SC, Saelens BE, Khoury PR, et al. Dietary approaches to stop hypertension dietary intervention improves blood pressure and vascular health in youth with elevated blood pressure. Hypertension. 2020; https://doi.org/10.1161/HYPERTENSIONAHA.120.16156.

  195. Ferguson MA, Flynn JT. Rational use of antihypertensive medications in children. Pediatr Nephrol. 2014a;29:979–88.

    Article  PubMed  Google Scholar 

  196. Burckart GJ, Kim C. The Revolution in Pediatric Drug Development and Drug Use: Therapeutic Orphans No More. J Pediatr Pharmacol Ther. 2020;25:565–73.

    PubMed  PubMed Central  Google Scholar 

  197. Chin WW, Joos A. Moving toward a paradigm shift in the regulatory requirements for pediatric medicines. Eur J Pediatr. 2016;175:1881–91.

    Article  PubMed  Google Scholar 

  198. Hill KD, Henderson HT, Hornik CP, Li JS. Paediatric cardiovascular clinical trials: an analysis of ClinicalTrials.gov and the Food and Drug Administration Pediatric Drug Labeling Database. Cardiol Young. 2015;25(Suppl 2):172–80.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Ferguson MA, Flynn JT. Treatment of pediatric hypertension: Lessons learned from recent clinical trials. Curr Cardiovascular Risk Rep. 2014b;8:399.

    Article  Google Scholar 

  200. Lim AM, Chong SL, Ng YH, Chan YH, Lee JH. Epidemiology and management of children with hypertensive crisis: a single-center experience. J Pediatr Intensive Care. 2020;9:45–50.

    Article  PubMed  Google Scholar 

  201. Flynn JT, Tullus K. Severe hypertension in children and adolescents: pathophysiology and treatment. Pediatr Nephrol. 2009;24:1101–12. Erratum in: Pediatr Nephrol. 2012;27:503–4

    Article  PubMed  Google Scholar 

  202. Seeman T, Hamdani G, Mitsnefes M. Hypertensive crisis in children and adolescents. Pediatr Nephrol. 2019;34:2523–37.

    Article  PubMed  Google Scholar 

  203. Baracco R. A Practical Guide to the Management of Severe Hypertension in Children. Paediatr Drugs. 2020;22:13–20.

    Article  PubMed  Google Scholar 

  204. Buitenwerf E, Osinga TE, Timmers HJLM, et al. Efficacy of α-Blockers on Hemodynamic Control during Pheochromocytoma Resection: A Randomized Controlled Trial. J Clin Endocrinol Metab. 2020;105:2381–91.

    Article  Google Scholar 

  205. van der Zee PA, de Boer A. Pheochromocytoma: a review on preoperative treatment with phenoxybenzamine or doxazosin. Neth J Med. 2014;72:190–201.

    PubMed  Google Scholar 

  206. Omboni S, McManus RJ, Bosworth HB, et al. Evidence and Recommendations on the Use of Telemedicine for the Management of Arterial Hypertension: An International Expert Position Paper. Hypertension. 2020;76:1368–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Flynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Larkins, N., Lurbe, E., Flynn, J.T. (2021). Evaluation and Management of Hypertension in Children. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_123-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_123-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics