Skip to main content

Optical Coherence Tomography: A Concept Review

  • Chapter
  • First Online:
Optical Coherence Tomography

Abstract

Optical coherence tomography (OCT) is an imaging modality broadly used in biological tissue imaging. In this chapter, we review the history of OCT and its development throughout the last years. We will focus on the physical concept of OCT imaging of the eye fundus, considering several settings currently used. We also list some research directions of recent and ongoing work concerned with the future developments of the technique and its application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21(11), 1361–1367 (2003)

    Article  Google Scholar 

  2. J.G. Fujimoto, Optical coherence tomography: principles and applications. Rev. Laser Eng. 31, 635–642 (2003)

    Article  Google Scholar 

  3. G.H. Mundt Jr., W.F. Hughes Jr., Ultrasonics in ocular diagnosis. Am. J. Ophthalmol. 41(3), 488–498 (1956)

    Google Scholar 

  4. J.C. Bamber, M. Tristam, Diagnostic ultrasound, in The Physics of Medical Imaging, ed. by S. Webb (Adam Hilger, Bristol, 1988), pp. 319–388

    Google Scholar 

  5. W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24(17), 1221–1223 (1999)

    Article  ADS  Google Scholar 

  6. W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kärtner, J.S. Schuman, J.G. Fujimoto, Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7(4), 502–507 (2001)

    Article  Google Scholar 

  7. U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Považay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005)

    Article  Google Scholar 

  8. V.J. Srinivasan, Y. Chen, J.S. Duker, J.G. Fujimoto, In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT. Opt. Express 17(5), 3861–3877 (2009)

    Article  ADS  Google Scholar 

  9. N. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, C. Bruni, Statistics of optical coherence tomography data from human retina. IEEE Trans. Med. Imaging 29(6), 1224–1237 (2010)

    Article  Google Scholar 

  10. R. Bernardes, T. Santos, P. Serranho, C. Lobo, J. Cunha-Vaz, On invasive evaluation of retinal leakage using optical coherence tomography. Ophthalmologica 226(2), 29–36 (2011)

    Article  Google Scholar 

  11. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, In vivo retinal optical coherence tomography at 1040 nm—enhanced penetration into the choroid. Opt. Express 13(9), 3252–3258 (2005)

    Article  ADS  Google Scholar 

  12. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, Simultaneous high-resolution retinal imaging and high-penetration, choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Opt. Express 18(8), 8515–8527 (2010)

    Article  ADS  Google Scholar 

  13. J. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999)

    Article  Google Scholar 

  14. W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9(1), 47–74 (2004)

    Article  ADS  Google Scholar 

  15. A.G. Podoleanu, Optical coherence tomography. Br. J. Radiol. 78(935), 976–988 (2005)

    Google Scholar 

  16. P.H. Tomlins, R.K. Wang, Theory, developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005)

    Article  ADS  Google Scholar 

  17. M.L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L.S. Folio, J.S. Schuman. Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011)

    Article  Google Scholar 

  18. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser. Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  19. M. Brezinski, J. Fujimoto, Optical coherence tomography: high-resolution imaging in nontransparent tissue. IEEE J. Sel. Top. Quant, Electron. 5(4), 1185–1192 (1999)

    Google Scholar 

  20. A. Zysk, F. Nguyen, A. Oldenburg, D. Marks, S. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12(5), 051403 (2007)

    Google Scholar 

  21. M. Wurm, K. Wiesauer, K. Nagel, M. Pircher, E. Götzinger, C.K. Hitzenberger, D. Stifter, in Spectral Domain Optical Coherence Tomography: A Novel And Fast Tool For NDT. IVth NDT in Progress, Prague, Czech Republic, 5–7 November 2007

    Google Scholar 

  22. D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. PIircher, E. Götzinger, B. Baumann, C.K. Hitzenberger, in Advanced Optical Coherence Tomography Techniques: Novel and Fast Imaging Tools for Non-destructive Testing. 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008

    Google Scholar 

  23. Z. Yaqoob, J. Wu, C. Yang, Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques 39(6), 6–13 (2005)

    Article  Google Scholar 

  24. S. Wolf, U. Wolf-Schnurrbusch, Spectral-domain optical coherence tomography use in macular diseases: a review. Ophthalmologica 224(6), 333–340 (2010)

    Article  Google Scholar 

  25. P.A. Flournoy, R.W. McClure, G. Wyntjes, White-light interferometric thickness gauge. Appl. Opt. 11(9), 1907–1915 (1972)

    Google Scholar 

  26. A.F. Fercher, K. Mengedoht, W. Werner, Eyelength measurement by interferometry with partially coherent light. Opt. Lett. 13(3), 186–188 (1988)

    Article  ADS  Google Scholar 

  27. F. Fercher, Ophthalmic interferometry, in Proceedings of the International Conference on Optics in Life Sciences. ed. by G. von Bally, S. Khanna, Garmisch-Partenkirchen, Germany, 12–16 August 1990, pp. 221–228, (ISBN 0–444–89860–3)

    Google Scholar 

  28. C.K. Hitzenberger, Optical measurement of the axial eye length by laser Doppler interferometry. Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991)

    Google Scholar 

  29. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Google Scholar 

  30. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am. J. Ophthalmol. 116(1), 113–114 (1993)

    Google Scholar 

  31. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18(21), 1864–1866 (1993)

    Article  ADS  Google Scholar 

  32. J.M. Schmitt, A. Knüttel, M. Yadlowsky, M.A. Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol. 39(10), 1705–1720 (1994)

    Article  Google Scholar 

  33. J.A. Izatt, M.R. Hee, E.A. Swanson, C.P. Lin, D. Huang, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch. Ophthalmol. 112(12), 1584–1589 (1994)

    Article  Google Scholar 

  34. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    Article  Google Scholar 

  35. A. Podoleanu, J. Rogers, D. Jackson, S. Dunne, Three dimensional OCT images from retina and skin. Opt. Express 7(9), 292–298 (2000)

    Article  ADS  Google Scholar 

  36. C. Hitzenberger, P. Trost, P.W. Lo, Q. Zhou, Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt. Express 11(21), 2753–2761 (2003)

    Article  ADS  Google Scholar 

  37. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  38. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5), 340–342 (1997)

    Article  ADS  Google Scholar 

  39. F. Lexer, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Wavelength-tuning interferometry of intraocular distances. Appl. Opt. 36(25), 6548–6553 (1997)

    Article  ADS  Google Scholar 

  40. B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt. Lett. 22(22), 1704–1706 (1997)

    Article  ADS  Google Scholar 

  41. G. Häusler, M.W. Lindner, “Coherence radar” and “spectral radar”—new tools for dermatological diagnosis. J. Biomed. Opt. 3(1), 21–31 (1998)

    Article  Google Scholar 

  42. M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  43. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  44. R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)

    Google Scholar 

  45. C.K. Leung, C.Y. Cheung, R.N. Weinreb, G. Lee, D. Lin, C.P. Pan, D.S. Lam, Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 49(11), 4893–4897 (2008)

    Article  Google Scholar 

  46. F. Forooghian, C. Cukras, C.B. Meyerle, E.Y. Chew, W.T. Wong, Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest. Ophthalmol. Vis. Sci. 49(10), 4290–4296 (2008)

    Article  Google Scholar 

  47. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)

    Article  ADS  Google Scholar 

  48. B.E. Bouma, G.J. Tearnley (eds.), Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002)

    Google Scholar 

  49. Z. Hu, Y. Pan, A.M. Rollins, Analytical model of spectrometer-based two-beam spectral interferometry. Appl. Opt. 46(35), 8499–8505 (2007)

    Article  ADS  Google Scholar 

  50. M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10(4), 44009 (2005)

    Google Scholar 

  51. B. Potsaid, B. Baumann, D. Huang, S. Barry, A.E. Cable, J.S. Schuman, J.S. Duker, J.G. Fujimoto, Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18(19), 20029–20048 (2010)

    Article  Google Scholar 

  52. B. Baumann, B. Potsaid, M.F. Kraus, J.J. Liu, D. Huang, J. Hornegger, A.E. Cable, J.S. Duker, J.G. Fujimoto, Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed. Opt. Express 2(6), 1539–1552 (2011)

    Article  Google Scholar 

  53. A.S. Neubauer, L. Reznicek, T. Klein, W. Wieser, C.M. Eigenwillig, B. Biedermann, A. Kampik, R. Huber, Ultra-High-Speed Ultrawide Field Swept Source OCT Reconstructed Fundus Image Quality (ARVO, Fort Lauderdale, USA, 1–5 May, 2011) (Program/Poster # 1327/A264)

    Google Scholar 

  54. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara, Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43(14), 2874–2883 (2004)

    Article  ADS  Google Scholar 

  55. A. Dubois, G. Moneron, K. Grieve, A.C. Boccara, Three-dimensional cellular-level imaging using full-field optical coherence tomography. Phys. Med. Biol. 49(7), 1227–1234 (2004)

    Article  Google Scholar 

  56. A. Dubois, J. Moreau, C. Boccara, Spectroscopic ultrahigh-resolution full-field optical coherence microscopy. Opt. Express 16(21), 17082–17091 (2008)

    Article  ADS  Google Scholar 

  57. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

  58. A.F. Abouraddy, M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65(5), 053817 (2002)

    Google Scholar 

  59. M.B. Nasr, B.E. Saleh, A.V. Sergienko, M.C. Teich, Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91(8), 083601 (2003)

    Google Scholar 

  60. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express 9(12), 610–615 (2001)

    Article  ADS  Google Scholar 

  61. E.D.J. Smith, A.V. Zvyagin, D.D. Sampson, Real-time dispersion compensation in scanning interferometry. Opt. Lett. 27(22), 1998–2000 (2002)

    Article  ADS  Google Scholar 

  62. S. Carrasco, J.P. Torres, L. Torner, A. Sergienko, B.E. Saleh, M.C. Teich, Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching. Opt. Lett. 29(20), 2429–2431 (2004)

    Article  ADS  Google Scholar 

  63. M. Nasr, B. Saleh, A. Sergienko, M. Teich, Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography. Opt. Express 12(7), 1353–1362 (2004)

    Article  ADS  Google Scholar 

  64. M.B. Nasr, D.P. Goode, N. Nguyen, G. Rong, L. Yang, B.M. Reinhard, B.E. Saleh, M.C. Teich, Quantum optical coherence tomography of a biological sample. Opt. Commun. 282, 1154–1159 (2009)

    Article  ADS  Google Scholar 

  65. M.C. Teich, B.E.A. Saleh, F.N.C. Wong, J.H. Shapiro, Quantum optical coherence tomography: a review. Quant. Inf. Process (2012, in press), http://people.bu.edu/teich/abstracts/quantum-opt-archive.html

  66. M.C. Booth, G. Di Giuseppe, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Polarization-sensitive quantum-optical coherence tomography. Phys. Rev. A 69(4), 043815 (2004)

    Google Scholar 

  67. M.C. Booth, B.E. Saleh, M.C. Teich, Polarization-sensitive quantum optical coherence tomography: experiment. Opt. Commun. 284, 2542–2549 (2011)

    Article  ADS  Google Scholar 

  68. A. Bilenca, T. Lasser, B. Bouma, R.A. Leitgeb, G.J. Tearney, Information limits of optical coherence imaging through scattering media. Photon. J. IEEE 1(2), 119–127 (2009)

    Article  Google Scholar 

  69. R. Bernardes, T. Santos, J. Cunha-Vaz, in Evaluation of Blood–Retinal Barrier Function from Fourier Domain High-Definition Optical Coherence Tomography, ed. by O. Dössel, W.C. Schlegel. World Congress on Medical Physics and Biomedical Engineering, vol. 25/11, Munich, Germany, 7–12 September 2009, pp. 316–319 (Springer, Heidelberg, 2009)

    Google Scholar 

  70. R. Bernardes, Optical coherence tomography: health information embedded on OCT signal statistics, in Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, USA, 30 August–3 September 2011, pp. 6131–6133

    Google Scholar 

  71. T. Klein, L. Reznicek, W. Wieser, C.M. Eigenwillig, B. Biedermann, A. Kampik, R. Huber, A.S. Neubauer, Extraction of Arbitrary OCT Scan Paths from 3D Ultra-High-Speed Ultra Wide-Field Swept Source OCT (ARVO, Fort Lauderdale, USA, 1–5 May 2011) (Program/Poster # 1328/A265)

    Google Scholar 

  72. V.J. Srinivasan, D.C. Adler, Y. Chen, E. Gorczynska, R. Huber, J.S. Duker, J.S. Schuman, J.G. Fujimoto, Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008)

    Article  Google Scholar 

  73. Y. Ikuno, I. Maruko, Y. Yasuno, M. Miura, T. Sekiryu, K. Nishida, T. Iida, Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52(8), 5536–5540 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Serranho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Serranho, P., Morgado, A.M., Bernardes, R. (2012). Optical Coherence Tomography: A Concept Review. In: Bernardes, R., Cunha-Vaz, J. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27410-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27410-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27409-1

  • Online ISBN: 978-3-642-27410-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics