Skip to main content

Error-free Multi-valued Broadcast and Byzantine Agreement with Optimal Communication Complexity

  • Conference paper
Principles of Distributed Systems (OPODIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7109))

Included in the following conference series:

Abstract

In this paper we present first ever error-free, asynchronous broadcast (called as A-cast) and Byzantine Agreement (called as ABA) protocols with optimal communication complexity and fault tolerance. Our protocols are multi-valued, meaning that they deal with ℓ bit input and achieve communication complexity of \({\mathcal O}(n\ell)\) bits for large enough ℓ for a set of n ≥ 3t + 1 parties in which at most t can be Byzantine corrupted. Previously, Patra and Rangan (Latincrypt’10, ICITS’11) reported multi-valued, communication optimal A-cast and ABA protocols that are only probabilistically correct.

Following all the previous works on multi-valued protocols, we too follow reduction-based approach for our protocols, meaning that our protocols are designed given existing A-cast and ABA protocols for small message (possibly for single bit). Our reductions invoke less or equal number of instances of protocols for single bit in comparison to the reductions of Patra and Rangan. Furthermore, our reductions run in constant expected time, in contrast to \({\mathcal O}(n)\) of Patra and Rangan (ICITS’11). Also our reductions are much simpler and more elegant than their reductions.

By adapting our techniques from asynchronous settings, we present new error-free, communication optimal reduction-based protocols for broadcast (BC) and Byzantine Agreement (BA) in synchronous settings that are constant-round and call for only \(\mathcal O(n^2)\) instances of protocols for single bit. Prior to this, communication optimality has been achieved by Fitzi and Hirt (PODC’06) who proposed probabilistically correct multi-valued BC and BA protocols with constant-round and \({\mathcal O}(n(n+\kappa))\) (κ is the error parameter) invocations to the single bit protocols. Recently, Liang and Vaidya (PODC’11) achieved the same without error probability. However, their reduction calls for round complexity and number of instances that are function of the message size, \({\mathcal O}(\sqrt{\ell} + n^2)\) and \({\mathcal O}(n^2\sqrt{\ell} + n^4)\), respectively where ℓ = Ω(n 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial protocol for asynchronous Byzantine Agreement with optimal resilience. In: PODC, pp. 405–414. ACM Press (2008)

    Google Scholar 

  2. Berman, P., Garay, G.A., Perry, K.J.: Bit optimal distributed consensus. Computer Science Research (2009)

    Google Scholar 

  3. BenOr, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: PODC, pp. 183–192. ACM Press (1994)

    Google Scholar 

  4. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement protocols. In: PODC, pp. 27–30. ACM Press (1983)

    Google Scholar 

  5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous Secure Computation. In: STOC, pp. 52–61. ACM Press (1993)

    Google Scholar 

  6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10. ACM Press (1988)

    Google Scholar 

  7. Bracha, G.: An asynchronous \(\lfloor (n - 1) / 3 \rfloor\)-resilient consensus protocol. In: PODC, pp. 154–162. ACM Press (1984)

    Google Scholar 

  8. Beerliová-Trubíniová, Z., Hirt, M.: Efficient Multi-Party Computation with Dispute Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  10. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: STOC, pp. 383–395. ACM Press (1985)

    Google Scholar 

  11. Canetti, R., Rabin, T.: Fast asynchronous Byzantine Agreement with optimal resilience. In: STOC, pp. 42–51. ACM Press (1993)

    Google Scholar 

  12. Coan, B.A., Welch, J.L.: Modular construction of a Byzantine Agreement protocol with optimal message bit complexity. Information and Computation 97(1), 61–85 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine Agreement. JACM 32(1), 191–204 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fitzi, M., Hirt, M.: Optimally Efficient Multi-valued Byzantine Agreement. In: PODC, pp. 163–168 (2006)

    Google Scholar 

  15. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. JACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feldman, P., Micali, S.: An Optimal Algorithm for Synchronous Byzantine Agreemet. In: STOC, pp. 639–648. ACM Press (1988)

    Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  18. Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Liang, G., Vaidya, N.H.: Error-Free Multi-Valued Consensus with Byzantine Failures. In: PODC, pp. 11–20. ACM Press (2011)

    Google Scholar 

  20. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)

    Google Scholar 

  21. Patra, A., Rangan, C.P.: Communication Optimal Multi-Valued Asynchronous Broadcast Protocol. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 162–177. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Patra, A., Rangan, C.P.: Communication Optimal Multi-Valued Asynchronous Byzantine Agreement with Optimal Resilience. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 206–226. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Pease, M., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. JACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for Any Number of Faulty Processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  25. Rabin, M.O.: Randomized Byzantine generals. In: FOCS, pp. 403–409. IEEE Computer Society (1983)

    Google Scholar 

  26. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85. ACM Press (1989)

    Google Scholar 

  27. Turpin, R., Coan, B.A.: Extending binary Byzantine Agreement to multivalued Byzantine Agreement. IPL 18(2), 73–76 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patra, A. (2011). Error-free Multi-valued Broadcast and Byzantine Agreement with Optimal Communication Complexity. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds) Principles of Distributed Systems. OPODIS 2011. Lecture Notes in Computer Science, vol 7109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25873-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25873-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25872-5

  • Online ISBN: 978-3-642-25873-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics