Skip to main content

Cluster Ensembles via Weighted Graph Regularized Nonnegative Matrix Factorization

  • Conference paper
Advanced Data Mining and Applications (ADMA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7120))

Included in the following conference series:

Abstract

Cluster ensembles aim to generate a stable and robust consensus clustering by combining multiple different clustering results of a dataset. Multiple clusterings can be represented either by multiple co-association pairwise relations or cluster based features. Traditional clustering ensemble algorithms learn the consensus clustering using either of the two representations, but not both. In this paper, we propose to integrate the two representations in a unified framework by means of weighted graph regularized nonnegative matrix factorization. Such integration makes the two representations complementary to each other and thus outperforms both of them in clustering accuracy and stability. Extensive experimental results on a number of datasets further demonstrate this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Li, T., Ding, C.: Weighted consensus clustering. In: Proceedings of the 8th SIAM International Conference on Data Mining, pp. 798–809 (2008)

    Google Scholar 

  3. Wang, H., Shan, H., Banerjee, A.: Bayesian cluster ensembles. In: Proceedings of the 9th SIAM International Conference on Data Mining, pp. 211–222 (2009)

    Google Scholar 

  4. Wang, F., Wang, X., Li, T.: Generalized cluster aggregation. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, pp. 1279–1284 (2009)

    Google Scholar 

  5. Topchy, A., Jain, A., Punch, W.: Clustering ensembles: Models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1866–1881 (2005)

    Google Scholar 

  6. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Transactions on Knowledge Discovery from Data 1(1), 4 (2007)

    Article  Google Scholar 

  7. Li, T., Ding, C., Jordan, M.: Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In: Proceedings of the 7th IEEE International Conference on Data Mining, pp. 577–582 (2007)

    Google Scholar 

  8. Wang, F., Ding, C., Li, T.: Integrated kl (k-means-laplacian) clustering: A new clustering approach by combining attribute data and pairwise relations. In: Proceedings of the 9th SIAM International Conference on Data Mining, pp. 38–48 (2009)

    Google Scholar 

  9. Al-Razgan, M., Domeniconi, C.: Weighted clustering ensembles. In: Proceedings of 6th SIAM International Conference on Data Mining, pp. 258–269 (2006)

    Google Scholar 

  10. Hadjitodorov, S., Kuncheva, L., Todorova, L.: Moderate diversity for better cluster ensembles. Information Fusion 7(3), 264–275 (2006)

    Article  Google Scholar 

  11. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fern, X., Brodley, C.: Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the 21th International Conference on Machine Learning, pp. 281–288 (2004)

    Google Scholar 

  13. Topchy, A., Jain, A., Punch, W.: A mixture model for clustering ensembles. In: Proceedings of 4th SIAM International Conference on Data Mining, pp. 379–390 (2004)

    Google Scholar 

  14. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  15. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  MATH  Google Scholar 

  16. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized non-negative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (to appear, 2011)

    Google Scholar 

  17. Bertsekas, D.: Nonlinear programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  18. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  19. Lovász, L., Plummer, M.: Matching theory (1986)

    Google Scholar 

  20. Fern, X., Brodley, C.: Random projection for high dimensional data clustering: A cluster ensemble approach. In: Proceedings of the 20th International Conference on Machine Learning, pp. 186–193 (2003)

    Google Scholar 

  21. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics, 32–38 (1957)

    Google Scholar 

  22. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52(1), 91–118 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Du, L., Li, X., Shen, YD. (2011). Cluster Ensembles via Weighted Graph Regularized Nonnegative Matrix Factorization. In: Tang, J., King, I., Chen, L., Wang, J. (eds) Advanced Data Mining and Applications. ADMA 2011. Lecture Notes in Computer Science(), vol 7120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25853-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25853-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25852-7

  • Online ISBN: 978-3-642-25853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics