Skip to main content

Optimal Delaunay and Voronoi Quantization Schemes for Pricing American Style Options

  • Conference paper
  • First Online:
Numerical Methods in Finance

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 12))

Abstract

We review in this article pure quantization methods for the pricing of multiple exercise options. These quantization methods have the common advantage, that they allow a straightforward implementation of the Backward Dynamic Programming Principle for optimal stopping and stochastic control problems. Moreover we present here for the first time a unified discussion of this topic for Voronoi and Delaunay quantization and illustrate the performances of both methods by several numerical examples.

MSC Code: 62L15, 60F25, 65C50, 65D32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abaya, E.F. and Wise, G.L. [1982]: On the existence of optimal quantizers. IEEE Trans. Inform. Theory, 28, 937–940.

    Google Scholar 

  2. Abaya, E.F. and Wise, G.L. [1984]: Some remarks on the existence of optimal quantizers. Statistics and Probab. Letters, 2: 349–351.

    Google Scholar 

  3. Bally, V., Pagès, G. and Printems, J. [2001]: A Stochastic quantization method for nonlinear problems, Monte Carlo Methods and Appl., 7(1):21–34.

    Google Scholar 

  4. Bally, V., Pagès, G. [2003]: A quantization algorithm for solving discrete time multidimensional optimal stopping problems, Bernoulli, 9(6):1003–1049.

    Google Scholar 

  5. V. Bally, G. Pagès [2003]: Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes & Their Applications, 106(1):1–40.

    Google Scholar 

  6. Bally, V., Pagès, G. and Printems, J. [2003]: First order schemes in the numerical quantization method, Mathematical Finance 13(1):1–16.

    Google Scholar 

  7. Bally, V., Pagès, G. and Printems, J. [2005]: A quantization tree method for pricing and hedging multidimensional American options, Mathematical Finance, 15(1):119–168.

    Google Scholar 

  8. Bardou, O., Bouthemy, S. and Pagès, G. [2009]: Optimal quantization for the pricing of swing options, Applied Mathematical Finance, 16(2):183–217.

    Google Scholar 

  9. Bardou, O., Bouthemy, S. and Pagès, G. [2010]: When are swing option bang-bang?, International Journal for Theoretical and Applied Finance, 13(6):867–899.

    Google Scholar 

  10. Benaïm, M., Fort, J.C. and Pagès, G. [1998]: About the convergence of the one dimensional Kohonen algorithm, Advances in Applied Probability, 30(3):850–869.

    Google Scholar 

  11. Benveniste, A., Métivier, M. and Priouret, P. [1990]: Adaptive algorithms and stochastic approximations, Translated from the French by Stephen S. Wilson. Applications of Mathematics 22, Springer-Verlag, Berlin, 365 p.

    Google Scholar 

  12. Bouton, C. and Pagès, G. [1993]: Self-organization and a. s. convergence of the 1-dimensional Kohonen algorithm with non uniformly distributed stimuli, Stochastic Processes and their Applications, 47:249–274.

    Google Scholar 

  13. Bowyer, A. [1981]: Computing Dirichlet tessellations. The Computer Journal, 24(2):162–166.

    Google Scholar 

  14. Bronstein A.L., Pagès, G., Wilbertz, B.[2010]: A quantization tree algorithm: improvements and financial applications for swing options, Quantitative Finance, 10(9):995–1007.

    Google Scholar 

  15. Bucklew, J.A. and Wise, G.L. [1982]: Multidimensional asymptotic quantization theory with r th power distortion. IEEE Trans. Inform. Theory, 28(2):239–247.

    Google Scholar 

  16. Cohort, P. [1998]: Limit theorems for random normalized distortion, Annals of Applied Probability, 14(1):118–143.

    Google Scholar 

  17. Corlay, S. [2011]: A fast nearest neighbour search algorithm based on vector quantization, PhD Thesis, in progress.

    Google Scholar 

  18. Corlay, S. Pagès, G. [2010] : Functional quantization based stratified sampling methods. Pre-pub PMA-1341.

    Google Scholar 

  19. Devroye, L. Lemaire, C.and Moreau, J.-M. [2004]: Expected time analysis for Delaunay point location, Computational Geometry, 29(2):61–89

    Google Scholar 

  20. Du, Q. and Gunzburger, M. [2002]: Grid generation and optimization based on centroidal Voronoi tessellations, Appl. Math. and Comput., 133(4):591–607.

    Google Scholar 

  21. Duflo, M. [1996]: Algorithms stochastiques, coll. SMAI Mathématiques & Applications, 23, Springer, 319p.

    Google Scholar 

  22. Friedman, J. H., Bentley, J.L. and Finkel R.A. [1977]: An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software, 3(3):209–226.

    Google Scholar 

  23. Gobet, E., Pagès, G. Pham, H. and Printems, J. [2007]: Discretization and simulation of the Zakai Equation, SIAM J. on Numerical Analysis, 44(6):2505–2538.

    Google Scholar 

  24. Gobet, E., Pagès, G. Pham, H. and Printems, J. [2005]: Discretization and simulation for a class of SPDEs with applications to Zakai and McKean-Vlasov equation, pre-pub. PMA-958.

    Google Scholar 

  25. Gersho, A. and Gray, R.M. [1992]: Vector Quantization and Signal Compression. Kluwer, Boston.

    Google Scholar 

  26. Graf, S. and Luschgy, H. [2000]: Foundations of Quantization for Probability Distributions. Lect. Notes in Math. 1730, Springer, Berlin, 230p.

    Google Scholar 

  27. Iri, M., Murota, K., and Ohya, T.[1984]: A fast Voronoi-diagram algorithm with applications to geographical optimization problems. In P. Throft-Christensen, editor, Proceedings of the 11th IFIP Conference Copenhagen, Lecture Notes in Control and Information Science, 59, 273–288.

    Google Scholar 

  28. Kieffer, J.C. [1982]: Exponential rate of convergence for Lloyd’s Method I, IEEE Trans. Inform. Theory, 28(2), 205–210.

    Google Scholar 

  29. Kieffer, J.C. [1983]: Uniqueness of locally optimal quantizer for log-concave density and convex error weighting functions, IEEE Trans. Inform. Theory, 29, 42–47.

    Google Scholar 

  30. Kushner, H. J., Yin, G. G. [2003]: Stochastic approximation and recursive algorithms and applications. Second edition. Applications of Mathematics 35. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 474p.

    Google Scholar 

  31. Lapeyre, B., Sab, K. and Pagès, G. [1990]: Sequences with low discrepancy. Generalization and application to Robbins-Monro algorithm, Statistics, 21(2): 251–272.

    Google Scholar 

  32. Longstaff, F.A. and Schwarz, E.S. [2001]: Valuing American options by simulation: a simple least-squares approach, Review of Financial Studies, 14:113–148.

    Google Scholar 

  33. Luschgy, H., Pagès, G. [2008]: Functional Quantization Rate and mean regularity of processes with an application to Lévy Processes, Annals of Applied Probability, 18(2):427–469.

    Google Scholar 

  34. McNames, J. [2001]: A Fast Nearest-Neighbor Algorithm Based on a Principal Axis Search Tree, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 964–976.

    Google Scholar 

  35. Mrad, M., Ben Hamida, S. [2006]: Optimal Quantization: Evolutionary Algorithm vs Stochastic Gradient, Proceedings of the 9th Joint Conference on Information Sciences.

    Google Scholar 

  36. Mcke, E.P., Saias, I. and Zhu, B. [1999]: Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations. Computational Geometry, 12(1–2), 63–83.

    Google Scholar 

  37. Newman, D.J. [1982]: The Hexagon Theorem. IEEE Trans. Inform. Theory, 28, 137–138.

    Google Scholar 

  38. Okabe, A. Boots, B. Sugihara K. and Chiu S.N. [2000]: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd Edition, Wiley, New York, 696p.

    Google Scholar 

  39. Pagès, G. [1993]: Voronoi tessellation, space quantization algorithm and numerical integration. Proceedings of the ESANN’93, M. Verleysen Ed., Editions D Facto, Bruxelles, 221–228.

    Google Scholar 

  40. Pagès, G. [1998]: A space vector quantization method for numerical integration, J. Computational and Applied Mathematics, 89:1–38.

    Google Scholar 

  41. Pagès, G., Pham, H. and Printems, J. [2003]: Optimal quantization methods and applications to numerical methods in finance. Handbook of Computational and Numerical Methods in Finance, S.T. Rachev ed., Birkhäuser, Boston, 429p.

    Google Scholar 

  42. Pagès, G. and Printems, J. [2003]: Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods and Appl., 9(2):135–165.

    Google Scholar 

  43. Pagès, G., Pham, H. and Printems, J. [2004]: An Optimal Markovian Quantization Algorithm for Multidimensional Stochastic Control Problems, Stochastics and Dynamics, 4(4):501–545.

    Google Scholar 

  44. Pagès, G. and Printems, J. [2005]: www.quantize.maths-fi.com, website devoted to optimal vector and functional quantization.

  45. Pagès, G., and Pham, H. [2005]: Optimal quantization methods for nonlinear filtering with discrete-time observations, Bernoulli, 11(5):893–932.

    Google Scholar 

  46. Pagès, G., Printems, J. [2009]: Optimal quantization for finance: from random vectors to stochastic processes, chapter in Mathematical Modeling and Numerical Methods in Finance (special volume) (A. Bensoussan, Q. Zhang guest eds.), coll. Handbook of Numerical Analysis (P.G. Ciarlet Editor), North Holland, 595–649.

    Google Scholar 

  47. Pagès, G. and Wilbertz W. [2009]: Dual Quantization for random walks with application to credit derivatives, pre-pub PMA-1322, to appear in Journal of Computational Finance.

    Google Scholar 

  48. Pagès, G. and Wilbertz W. [2010]: Intrinsic stationarity for vector quantization: Foundation of dual quantization, pre-pub PMA-1393.

    Google Scholar 

  49. Pagès, G. and Wilbertz W. [2010]: Sharp rate for the dual quantization problem, pre-pub PMA-1402.

    Google Scholar 

  50. Pagès, G. and Wilbertz W.[2011]: GPGPUs in computational finance: Massive parallel computing for American style options, pre-pub PMA 1385, to appear in Concurrency and Computable: Practice and Experience.

    Google Scholar 

  51. Pham, H. Sellami, A. and Runggaldier W. [2005] :Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation, Monte Carlo Methods and Applications, 11(1):57–81.

    Google Scholar 

  52. Pollard, D. [1982]: Quantization and the method of k-means. IEEE Trans. Inform. Theory, 28(2):199–205.

    Google Scholar 

  53. Premia software by MATHFI team (Inria),www-rocq.inria.fr/mathfi/Premia/index.html.

    Google Scholar 

  54. Sellami A. [2010]: Quantization Based Filtering Method Using First Order Approximation, SIAM J. on Num. Anal., 47(6):4711–4734.

    Google Scholar 

  55. Sellami, A. [2010]: Comparative survey on nonlinear filtering methods: the quantization and the particle filtering approaches, Journal of Statistical Computation and Simulation, 78(2):93–113.

    Google Scholar 

  56. Trushkin, A.V. [1982]: Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions, IEEE Trans. Inform. Theory, 28(2):187–198.

    Google Scholar 

  57. Wilbertz, B. [2005]: Computational aspects of functional quantization for Gaussian measures and applications, diploma thesis, Univ. Trier (Germany).

    Google Scholar 

  58. Zador, P.L. [1963]: Development and evaluation of procedures for quantizing multivariate distributions. Ph.D. dissertation, Stanford Univ. (USA).

    Google Scholar 

  59. Zador, P.L. [1982]: Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory, 28(2), 139–149.

    Google Scholar 

Download references

Acknowledgements

Parts of this work has benefited from helpful discussions with S. Bouthemy and N. Casini (GDF-SUEZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Pagès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pagès, G., Wilbertz, B. (2012). Optimal Delaunay and Voronoi Quantization Schemes for Pricing American Style Options. In: Carmona, R., Del Moral, P., Hu, P., Oudjane, N. (eds) Numerical Methods in Finance. Springer Proceedings in Mathematics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25746-9_6

Download citation

Publish with us

Policies and ethics