Skip to main content

Improved Key Generation for Gentry’s Fully Homomorphic Encryption Scheme

  • Conference paper
Cryptography and Coding (IMACC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7089))

Included in the following conference series:

Abstract

A key problem with the original implementation of the Gentry Fully Homomorphic Encryption scheme was the slow key generation process. Gentry and Halevi provided a fast technique for 2-power cyclotomic fields. We present an extension of the Gentry–Halevi key generation technique for arbitrary cyclotomic fields. Our new method is roughly twice as efficient as the previous best methods. Our estimates are backed up with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138. Springer GTM (1993)

    Google Scholar 

  2. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    MATH  Google Scholar 

  3. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing – STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  5. Gentry, C.: A fully homomorphic encryption scheme. PhD, Stanford University (2009)

    Google Scholar 

  6. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Good, I.J.: The interaction algorithm and practical Fourier analysis. J.R. Stat. Soc. 20, 361–372 (1958)

    MATH  MathSciNet  Google Scholar 

  8. Ogura, N., Yamamoto, G., Kobayashi, T., Uchiyama, S.: An Improvement of Key Generation Algorithm for Gentry’s Homomorphic Encryption Scheme. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 70–83. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Rader, C.M.: Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1968)

    Article  Google Scholar 

  10. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Smart, N.P., Vercauteren, F.: Fully Homomorphic SIMD Operations. IACR e-print, 133 (2011)

    Google Scholar 

  12. Thomas, L.H.: Using a computer to solve problems in physics. Application of Digital Computers (1963)

    Google Scholar 

  13. Trench, W.F.: An algorithm for the inversion of finite Toeplitz matrices. J. SIAM 12, 515–522 (1964)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scholl, P., Smart, N.P. (2011). Improved Key Generation for Gentry’s Fully Homomorphic Encryption Scheme. In: Chen, L. (eds) Cryptography and Coding. IMACC 2011. Lecture Notes in Computer Science, vol 7089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25516-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25516-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25515-1

  • Online ISBN: 978-3-642-25516-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics